ТЕОРИЯ ВЕРОЯТНОСТИ


Определения вероятности
Классическое определение
Классическое "определение" вероятности исходит из понятия равновозможности как объективного свойства изучаемых явлений. Равновозможность является неопределяемым понятием и устанавливается из общих соображений симметрии изучаемых явлений. Например, при подбрасывании монетки исходят из того, что в силу предполагаемой симметрии монетки, однородности материала и случайности (непредвзятости) подбрасывания нет никаких оснований для предпочтения "решки" перед "орлом" или наоборот, то есть выпадение этих сторон можно считать равновозможными (равновероятными).
Наряду с понятием равновозможности в общем случае для классического определения необходимо также понятие элементарного события (исхода), благоприятствующего или нет изучаемому событию A. Речь идет об исходах, наступление которых исключает возможность наступления иных исходов. Это несовместимые элементарные события. К примеру при бросании игральной кости выпадение конкретного числа исключает выпадение остальных чисел.
Классическое определение вероятности можно сформулировать следующим образом:
Вероятностью случайного события A называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие A, к числу всех возможных элементарных событий N:

Например, пусть подбрасываются две кости. Общее количество равновозможных исходов (элементарных событий) равно очевидно 36 (6 возможностей на каждой кости). Оценим вероятность выпадения 7 очков. Получение 7 очков возможно следующими способами: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1. То есть всего 6 равновозможных исходов, благоприятствующих событию A - получению 7 очков. Следовательно, вероятность будет равна 6/36=1/6. Для сравнения вероятность получения 12 очков или 2 очков равна всего 1/36 - в 6 раз меньше.
Геометрическое определение
Несмотря на то, что классическое определение является интуитивно понятным и выведенным из практики, оно, как минимум не может быть непосредственно применено в случае, если количество равновозможных исходов бесконечно. Ярким примером бесконечного числа возможных исходов является ограниченная геометрическая область G, например, на плоскости, с площадью S. Случайно "подброшенная" "точка" с равной вероятностью может оказаться в любой точке этой области. Задача заключается в определении вероятности попадания точки в некоторую подобласть g с площадью s. В таком случая обобщая классическое определение можно прийти к геометрическому определению вероятности попадания в подобласть :

В виду равновозможности вероятность эта не зависит от формы области g, она зависит только от ее площади. Данное определение естественно можно обобщить и на пространство любой размерности, где вместо площади использовать понятие "объема". Более того, именно такое определение приводит к современному аксиоматическому определению вероятности. Понятие объема обобщается до понятия "меры" некоторого абстрактного множества, к которой предъявляются требования, которыми обладает и "объем" в геометрической интерпретации - в первую очередь, это неотрицательность и аддитивность.
Частотное (статистическое) определение
Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где  - количество наблюдений, а  - количество наступлений события .
Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к  (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.
Аксиоматическое определение
В современном математическом подходе вероятность задаётся аксиоматикой Колмогорова. Предполагается, что задано некоторое пространство элементарных событий . Подмножества этого пространства интерпретируются как случайные события. Объединение (сумма) некоторых подмножеств (событий) интерпретируется как событие, заключающееся в наступлении хотя бы одного из этих событий. Пересечение (произведение) подмножеств (событий) интерпретируется как событие, заключающееся в наступлении всех этих событий. Непересекающиеся множества интерпретируются как несовместные события (их совместное наступление невозможно). Соответственно, пустое множество означает невозможноесобытие.
Вероятностью (вероятностной мерой) называется мера (числовая функция) , заданная на множестве событий, обладющая следующими свойствами:
Неотрицательность: ,
Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий, то есть формально если т.е.  при , то .
Конечность (ограниченность единицей): ,
В случае если пространство элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счетного или несчетного) пространства элементарных событий этого условия оказывается недостаточно. Требуется так называемая счетная или сигма- аддитивность, то есть выполнение свойства аддитивности для любого не более чем счетногосемейства попарно несовместных событий. Это необходимо для обеспечения "непрерывности" вероятностной меры.
Вероятностная мера может быть определена не для всех подмножеств множества . Предполагается, что она определена на некоторой  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%B3%D0%BC%D0%B0-%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" \o "Сигма-алгебра" сигма-алгебре  подмножеств [6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность  — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным пространством.
   Непрерывные случайные величины.    Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:  

   Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х.    Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.    Случайная величина  называется непрерывной, если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству
(22)
   Функция  называется плотностью распределения вероятностей, или кратко, плотностью распределения. Если x1<x2, то на основании формул (20) и (22) имеем
(23)
   Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств  равна площади криволинейной трапеции с основанием[x1,x2], ограниченной сверху кривой  (рис. 6).

   Так как , а на основании формулы (22)  

   , то
(24)
   Пользуясь формулой (22), найдем  как производную интеграла по переменной верхней границе, считая плотность распределения  непрерывной**:
(25)
   Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х, где функция  непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.    На основании формулы (23), полагая x1=x, , имеем  

   В силу непрерывности функции F(х) получим, что  

   Следовательно  

   Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.    Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств  
 ,  ,  , 
   Имеют одинаковую вероятность, т.е.  

   В самом деле, например,  

   так как     Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x1. Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.    Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.    Пример. Плотность распределения непрерывной случайной величины задана следующим образом:  

   График функции  представлен па рис. 7. Определить вероятность того, что случайная величина  примет значение, удовлетворяющее неравенствам .Найти функцию распределения заданной случайной величины. (Решение)

   Следующие два пункта посвящены часто встречающимся на практике распределениям непрерывных случайных величин — равномерному и нормальному распределениям. 
Дальше...
   * Функция называется кусочно-непрерывной на всей числовой оси, если она на любом сегменте или непрерывна, или имеет конечное число точек разрыва I рода.    ** Правило дифференцирования интеграла с переменной верхней границей, выведенное в случае конечной нижней границы, остается справедливым и для интегралов с бесконечной нижней границей. В самом деле,  

   Так как интеграл

   есть величина постоянная.
Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Пример 3. Монета брошена два раза. Вероятность появления "герба" в первом испытании (событие ) не зависит от появления или не появления "герба" во втором испытании (событие ). В свою очередь, вероятность появления "герба" во втором испытании не зависит от результата первого испытания. Таким образом, события  и  независимые.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события , вычисленная в предположении осуществления другого события , называется условной вероятностью события  и обозначается .

Условие независимости события  от события  записывают в виде , а условие его зависимости — в виде . Рассмотрим пример вычисления условной вероятности события.


Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Решение. Обозначим  извлечение изношенного резца в первом случае, а  — извлечение нового. Тогда . Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.

Обозначим  событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:


Следовательно, вероятность события  зависит от того, произошло или нет событие .
Пло́тность вероя́тности — один из способов задания вероятностной меры на евклидовом пространстве . В случае, когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины.
Плотность вероятности
Пусть  является вероятностной мерой на , то есть определено вероятностное пространство , где  обозначает борелевскую σ-алгебру на . Пусть обозначает меру Лебега на .
Определение 1. Вероятность  называется абсолютно непрерывной (относительно меры Лебега) (), если любое борелевское множество нулевой меры Лебега также имеет вероятность ноль:

Если вероятность  абсолютно непрерывна, то согласно теореме Радона-Никодима существует неотрицательная борелевская функция  такая, что
,
где использовано общепринятое сокращение , и интеграл понимается в смысле Лебега.
Определение 2. В более общем виде, пусть  — произвольное измеримое пространство, а  и  — две меры на этом пространстве. Если найдется неотрицательная , позволяющая выразить меру  через меру  в виде

то такую функцию называют плотностью меры  по мере , или производной Радона-Никодима меры  относительно меры , и обозначают
.
Свойства плотности вероятности[править]
Плотность вероятности определена почти всюду. Если  является плотностью вероятности  и  почти всюду относительно меры Лебега, то и функция  также является плотностью вероятности .
Интеграл от плотности по всему пространству равен единице:
.
Обратно, если  — неотрицательная п.в. функция, такая что , то существует абсолютно непрерывная вероятностная мера  на  такая, что  является её плотностью.
Замена меры в интеграле Лебега:
,
где  любая борелевская функция, интегрируемая относительно вероятностной меры .
Дисперсия, виды и свойства дисперсии
Понятие дисперсии
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная дисперсия (для вариационного ряда):

где n - частота (повторяемость фактора Х)
Пример нахождения дисперсии
На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение
Пример 1. Определение групповой, средней из групповой, межгрупповой и общей дисперсииПример 2. Нахождение дисперсии и коэффициента вариации в группировочной таблицеПример 3. Нахождение дисперсии в дискретном рядуПример 4. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;X min–минимальное значение группировочного признака;n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 - 159)/ 5 = 6,6
Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X'i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)
Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.
Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии, вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i — величина интервала;А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;m1 - квадрат момента первого порядка;m2 - момент второго порядка
Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии
Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.
Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.
Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi — групповая средняя; ni — число единиц в группе.
Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Правило сложения дисперсии в статистике
Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.
Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.
Свойства дисперсии
1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.
Квадратичное отклонение
ПереводКвадратичное отклонение
        квадратичное уклонение, стандартное отклонение величин x1, x2,..., xn от а — квадратный корень из выражения
         
         Наименьшее значение К. о. имеет при а = x̅, где x̅ — среднее арифметическое величин x1, x2,..., xn:
         
         В этом случае К. о. может служить мерой рассеяния системы величин x1, x2,..., xn. Употребляют также более общее понятие взвешенного К. о.
         <="" div="" style="border-style: none; ">
        числа p1,..., pn называют при этом весами, соответствующими величинам x1,..., xn. Взвешенное К. о. достигает наименьшего значения при а, равном взвешенному среднему:
         (p1x1 +... + pnxn)/(p1 +...+ pn).
         В теории вероятностей К. о. ох случайной величины Х (от её математического ожидания) называют квадратный корень из дисперсии (См.Дисперсия) 
         К. о. употребляют как меру качества статистических оценок и называют в этом случае квадратичной ошибкой. См. Ошибок теория.
Нормальное распределение также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности распределения:

где параметр μ — математическое ожидание, медиана и мода распределения, а параметр σ - стандартное отклонение(σ² — дисперсия) распределения.
Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в многомерном нормальном распределении.
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Значение
Важное значение нормального распределения во многих областях науки, например, в математической статистике истатистической физике вытекает из центральной предельной теоремы теории вероятностей. Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.
Свойства
Моменты
Моментами и абсолютными моментами случайной величины  называются математические ожидания  и соответственно. Если математическое ожидание случайной величины , то эти параметры называютсяцентральными моментами. В большинстве случаев представляют интерес моменты для целых .
Если  имеет нормальное распределение, то для неё существуют (конечные) моменты при всех  с действительной частью больше −1. Для неотрицательных целых , центральные моменты таковы:

Здесь  означает двойной факториал, то есть произведение всех нечетных от  до 1.
Центральные абсолютные моменты для неотрицательных целых p таковы:

Последняя формула справедлива также для произвольных .
Бесконечная делимость
Нормальное распределение является бесконечно делимым.
Если случайные величины  и  независимы и имеют нормальное распределение с математическими ожиданиями  и  и дисперсиями  и  соответственно, то  также имеет нормальное распределение с математическим ожиданием  и дисперсией . Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.
Максимальная энтропия
Нормальное распределение является непрерывным распределением с максимальной энтропией при заданном математическом ожидании и дисперсии.[3][4]Моделирование нормальных псевдослучайных величин
Простейшие приближённые методы моделирования основываются на центральной предельной теореме. Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых стандартно равномерно распределённых случайных величин, получим приближённое стандартное нормальное распределение.
Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса — Мюллера. Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.
Нормальное распределение в природе и приложениях
Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:
отклонение при стрельбе
погрешности измерений (однако, погрешности некоторых измерительных приборов имеют не нормальные распределения)
некоторые характеристики живых организмов в популяции
Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и Пуассоновское. Этим распределением моделируются многие не детерминированные физические процессы.
Многомерное нормальное распределение используется при исследовании свойств личности человека в психологии и психиатрии. Для моделирования некоторых сложных социально- экономических процессов, в частности, для моделирования процесса демократических выборов нормальное распределение не применимо.
КОРРЕЛЯЦИЯ
Корреля́ция (от лат. correlatio — соотношение, взаимосвязь), корреляционная зависимость — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1] Математической мерой корреляции двух случайных величин служит корреляционное отношение [2], либо коэффициент корреляции  (или )[1]. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[3].
Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%BB%D1%8C%D1%82%D0%BE%D0%BD,_%D0%A4%D1%80%D1%8D%D0%BD%D1%81%D0%B8%D1%81" \o "Гальтон, Фрэнсис" Фрэнсис Гальтон в конце XIX века.[4]Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором — также и её направление. Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой. При этом коэффициент корреляции будет отрицательным. Положительная корреляция в таких условиях — это такая связь, при которой увеличение одной переменной связано с увеличением другой переменной. Возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин.
Корреляция и взаимосвязь величин
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанес пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной. Из этого, однако, не следует вывод «бо́льшее количество пожарных приводит к бо́льшему ущербу», и тем более не имеет смысла попытка минимизировать ущерб от пожаров путем ликвидации пожарных бригад.[5] В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи.
Показатели корреляции 
Параметрические показатели корреляции 
Ковариация 
Основные статьи: Ковариация, Неравенство Коши — БуняковскогоВажной характеристикой совместного распределения двух случайных величин является ковариация (или корреляционный момент). Ковариация является совместным центральныммоментом второго порядка.[6] Ковариация определяется как математическое ожидание произведения отклонений случайных величин[7]:
,
где  — математическое ожидание.
Свойства ковариации:
Ковариация двух независимых случайных величин  и  равна нулю[8].
Доказательство  
Абсолютная величина ковариации двух случайных величин  и  не превышает среднего геометрического их дисперсий: [9].
Доказательство 
Ковариация имеет размерность, равную произведению размерности случайных величин, то есть величина ковариации зависит от единиц измерения независимых величин. Данная особенность ковариации затрудняет её использование в целях корреляционного анализа[8].
Линейный коэффициент корреляции 
Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона), который разработали Карл Пирсон,  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%AD%D0%B4%D0%B6%D1%83%D0%BE%D1%80%D1%82,_%D0%A4%D1%80%D1%8D%D0%BD%D1%81%D0%B8%D1%81_%D0%98%D1%81%D0%B8%D0%B4%D0%BE%D1%80" \o "Эджуорт, Фрэнсис Исидор" Фрэнсис Эджуорт и Рафаэль Уэлдон (англ.)русск. в 90-х годах XIX века. Коэффициент корреляции рассчитывается по формуле[10][8]:

где ,  — среднее значение выборок.
Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы[11].
Доказательство  [показать]Линейный коэффициент корреляции связан с коэффициентом регрессии в виде следующей зависимости: где  — коэффициент регрессии,  — среднеквадратическое отклонение соответствующего факторного признака[12].
Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».
Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или  (тау) Кендалла. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, когда связь между ними линейна (однонаправлена).
Непараметрические показатели корреляции [править]
Коэффициент ранговой корреляции Кендалла [править]
Применяется для выявления взаимосвязи между количественными или качественными показателями, если их можно ранжировать. Значения показателя X выставляют в порядке возрастания и присваивают им ранги. Ранжируют значения показателя Y и рассчитывают коэффициент корреляции  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BD%D0%B4%D0%B0%D0%BB%D0%BB,_%D0%9C%D0%BE%D1%80%D0%B8%D1%81_%D0%94%D0%B6%D0%BE%D1%80%D0%B4%D0%B6" \o "Кендалл, Морис Джордж" Кендалла:,
где .
 — суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов Y.
 — суммарное число наблюдений, следующих за текущими наблюдениями с меньшим значением рангов Y. (равные ранги не учитываются!)

Если исследуемые данные повторяются (имеют одинаковые ранги), то в расчетах используется скорректированный коэффициент корреляции Кендалла:



 — число связанных рангов в ряду X и Y соответственно.
Коэффициент ранговой корреляции Спирмена 
Каждому показателю X и Y присваивается ранг. На основе полученных рангов рассчитываются их разности  и вычисляется коэффициент корреляции Спирмена:

Коэффициент корреляции знаков Фехнера 
Подсчитывается количество совпадений и несовпадений знаков отклонений значений показателей от их среднего значения.

C — число пар, у которых знаки отклонений значений от их средних совпадают.
H — число пар, у которых знаки отклонений значений от их средних не совпадают.
Коэффициент множественной ранговой корреляции (конкордации

 — число групп, которые ранжируются.
 — число переменных.
 — ранг -фактора у -единицы.
Значимость:


, то гипотеза об отсутствии связи отвергается.
В случае наличия связанных рангов:


Свойства коэффициента корреляции 
Неравенство Коши — Буняковского:
если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши — Буняковского будет:
.
Коэффициент корреляции равен  тогда и только тогда, когда  и  линейно зависимы (исключая события нулевой вероятности, когда несколько точек «выбиваются» из прямой, отражающей линейную зависимость случайных величин):,
где . Более того в этом случае знаки  и  совпадают:
.
Доказательство  [показать]Если  независимые случайные величины, то . Обратное в общем случае неверно.
Корреляционный анализ 
Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации).[1][2]Ограничения корреляционного анализа 


Множество корреляционных полей. Распределения значений  с соответствующими коэффициентами корреляций для каждого из них. Коэффициент корреляции отражает «зашумлённость» линейной зависимости (верхняя строка), но не описывает наклон линейной зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка). Для распределения, показанного в центре рисунка, коэффициент корреляции не определен, так как дисперсия y равна нулю.
Применение возможно при наличии достаточного количества наблюдений для изучения. На практике считается, что число наблюдений должно не менее чем в 5-6 раз превышать число факторов (также встречается рекомендация использовать пропорцию, не менее чем в 10 раз превышающую количество факторов). В случае если число наблюдений превышает количество факторов в десятки раз, в действие вступает закон больших чисел, который обеспечивает взаимопогашение случайных колебаний.[13]Необходимо, чтобы совокупность значений всех факторных и результативного признаков подчиняласьмногомерному нормальному распределению. В случае если объём совокупности недостаточен для проведения формального тестирования на нормальность распределения, то закон распределения определяется визуально на основе корреляционного поля. Если в расположении точек на этом поле наблюдается линейная тенденция, то можно предположить, что совокупность исходных данных подчиняется нормальному закону распределения.[14].
Исходная совокупность значений должна быть качественно однородной.[13]Сам по себе факт корреляционной зависимости не даёт основания утверждать, что одна из переменных предшествует или является причиной изменений, или то, что переменные вообще причинно связаны между собой, а не наблюдается действие третьего фактора.[5]Область применения 
Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение,  HYPERLINK "http://ru.wikipedia.org/wiki/%D0%90%D0%B3%D1%80%D0%BE%D1%85%D0%B8%D0%BC%D0%B8%D1%8F" \o "Агрохимия" агрохимия,гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи.
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
Закон больших чисел
Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.
Всегда найдётся такое конечное число испытаний, при котором с любой заданной наперёд вероятностью меньше 1 относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.
Общий смысл закона больших чисел — совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.
На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.
Слабый закон больших чисел
Пусть есть бесконечная последовательность (последовательное перечисление) одинаково распределённых и некоррелированных случайных величин , определённых на одном вероятностном пространстве . То есть их ковариация . Пусть . Обозначим  выборочное среднее первых членов:
.
Тогда .
То есть для всякого положительного ,

Усиленный закон больших чисел
Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин , определённых на одном вероятностном пространстве . Пусть . Обозначим  выборочное среднее первых  членов:
.
Тогда  почти всегда.
То есть

Метод наименьших квадратов (МНК, OLS, Ordinary Least Squares) — один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.
Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных. Поэтому метод наименьших квадратов может применяться также для приближённого представления (аппроксимации) заданной функции другими (более простыми) функциями, при нахождении совокупности величин, удовлетворяющих уравнениям или ограничениям, количество которых превышает количество этих величин и т. д.

Приложенные файлы

  • docx 507247
    Размер файла: 743 kB Загрузок: 0

Добавить комментарий