Конструктивные особенности тележки


Конструктивные особенности тележки
Тягово-ходовая экипажная часть тепловоза выполнена тележечной на двух движущих тележках с осевой характеристикой 30—30. Поэтому от конструкции тележек в значительной степени зависят передача и реализация силы тяги, плавность хода и взаимодействие экипажной части и пути, безопасность движения и другие динамические характеристики тепловоза. На тепловозе применена унифицированная бесчелюстная тележка, разработанная и освоенная в серийном производстве ПО Ворошиловградтепловоз для отечественных магистральных грузовых тепловозов 2ТЭ116, 2ТЭ116А, 2ТЭ10В, ТЭ10М, ТЭ130, 2М62, маневровых — ТЭМЗ и экспортных грузо-пассажирских — ТЭ109 (модификаций 130, 131, 132, 142), ТЭ114, М62 мощностью 1470—2210 кВт в секции с конструкционной скоростью 100 км/ч —- 140 км/ч на колею 1520 мм  или   1435 мм.Для исполнения такой широкой по назначению модификации тепловозов конструкция унифицированной бесчелюстной тележки предусматривает:
возможность изменения передаточного числа тягового редуктора с 4,41 (75/17) до 3,04 (70/23) при одном и том же тяговом электродвигателе, т.е. обеспечивается постоянство межцентрового расстояния тягового редуктора;
изменение ширины колеи с 1520 до 1435мм с вписыванием в габарит О-2Т за счет изменения положения дисков колесных центров или их сдвижки на колесной паре;
установку тормозного оборудования тележки двух систем тормозов — типа Матросова для грузовых тепловозов и для тепловозов с конструкционной скоростью 120 км/ч и выше со ступенчатым нажатием типа Кнорр и др.;
тягово-прочностные качества тележки из расчета максимально допустимой нагрузки от колесной пары на рельсы 226 кН (23 тс).
Тележка в исполнении для тепловоза 2ТЭ116  состоит из следующих основных частей: рамы тележки , трех колесно-моторных блоков 19, рессорного подвешивания 4, опорно-возвращающего устройства 12, рычажной передачи тормоза 2, воздухопровода тормозного 11, трубопровода песочного 1. Она представляет собой унифицированную бесчелюстную трехосную тележку с индивидуальным приводом каждой колесной пары через односторонний и одноступенчатый тяговый редуктор от тягового электродвигателя постоянного тока ЭД-118А или ЭД-118Б с циркуляционной принудительной системой смазки моторно-осевых подшипников. Установка двигателей на тележке выполнена опорно-осевой с рядным их расположением. Такое расположение двигателей является одним из средств улучшения использования сцепной массы за счет однозначного распределения нагрузок по осям от тяги при движении тепловоза. Как показали испытания, улучшилось использование сцепной массы тепловоза на 10—12 %.

Рис.5. Тележка тепловоза 2ТЭ116:
1-песочная труба; 2-тормозная рычажная передача; 3-тормозная колодка;
4-пружинный комплект; 5-короткий кронштейн под буксовый поводок;
6-букса; 7-фрикционный гаситель колебаний; 8-длинный кронштейн подбуксовый поводок; 9-тормозной цилиндр; 10-контрольная риска на бандаже
колесной пары; 11-тормозной воздухопровод; 12-роликовая опора; 13-лест-
ница; 14-моторно-осевой подшипник; 15-рама тележки; 16-шкворневая бал-
ка; 17-шкворневое устройство; 18-колесная пара; 19-тяговый электродвига-
тель; 20-кронштейн подвески тягового электродвигателя; 21-клица вывод-
ных кабелей тягового электродвигателя.
Связь между рамой тележки и колесными парами осуществляется .через поводковые бесчелюстные буксы с жесткими осевыми упорами качения одностороннего действия. Такая связь позволяет передавать от колесных пар на раму тележки упруго, без наличия трения скольжения и зазоров, силу тяги и торможения, поперечные силы при набегании на рельс, а также обеспечивать симметричность и параллельность осей колесных пар в раме тележки и относительные вертикальные колебательные перемещения рамы тележки. Кроме того, для .уменьшения воздействия тепловоза на путь увеличена поперечная подвижность средней колесной пары за счет установки ее в буксах со свободным осевым разбегом ±14 мм.
Положение рамы тележки относительно колесных пар определяется пружинными комплектами индивидуального буксового рессорного подвешивания. Рессорным подвешиванием без учета поводков обеспечивается статический прогиб 126 мм и зазор 40—50 мм между корпусом буксы и боковиной рамы тележки, необходимый во избежание ударов при колебаниях надрессорного строения, возникающих при движении тепловоза и зависящих от состояния пути. Каждый пружинный комплект устанавливается с прокладками, которые служат для регулирования распределения нагрузок по осям тепловоза.
Параллельно индивидуальному буксовому рессорному подвешиванию включены фрикционные гасители колебаний сухого трения, которые способны одновременно гасить все три вида колебаний: подпрыгивание, галопирование и поперечную качку. Демпфирование колебаний регулируется изменением силы трения и на основании испытаний тепловоза обеспечивается в диапазоне 5—6 % к подрессоренному весу, что соответствует коэффициенту демпфирования 4—5, представляющему собой отношение работы сил трения фрикционных гасителей к работе упругих сил системы рессорного подвешивания при изменении прогиба от нуля до статического. Ведутся работы по внедрению гидравлических гасителей колебаний вязкостного трения.
В конструкции тележки применен пневматический, индивидуальный (для каждого колеса) колодочный тормоз с двусторонним нажатием чугунных гребневых тормозных колодок на колеса тепловоза. Каждое колесо обслуживается одним тормозным цилиндром через рычажную передачу. Рычажная передача имеет повышенную жесткость в поперечной плоскости благодаря установке между тормозными колодками поперечных триангелей для более надежного удержания колодок от сползания с бандажей и возможности применения безгребневых секционных тормозных колодок. Установочный выход штока тормозного цилиндра составляет 55 мм при зазоре 7 мм между колодкой и бандажом. Эксплуатационный выход штока должен быть в пределах 55 — 120 мм. Для его регулировки на продольных тягах рычажной передачи установлены типа «винт—гайка» регуляторы выхода штока тормозного цилиндра. Проводятся опытно-конструкторские работы по внедрению тормозных цилиндров ТЦР-10'' со встроенными регуляторами выхода штока, позволяющие без ручных регулировок поддерживать постоянный бандажный зазор до полного предельного износа тормозных колодок.
Нагрузка от надтележечного строения тепловоза передается на четыре комбинированные с резинометаллическими элементами роликовые опоры, которые размещены на боковинах рамы тележки. Каждая опора по отношению центра поворота тележки установлена так, что роликовой частью обеспечивается поворот тележки и возвращающий момент, а поперечное перемещение кузова (относ) достигается за счет поперечного сдвига каждого комплекта из семи резинометаллических элементов, установленных на верхней плите роликовой опоры. Как возвращающий момент, так и момент упругих сил опор обеспечивают гашение относительных колебаний кузова и тележек в горизонтальной плоскости без установки дополнительных демпферов при движении тепловоза со скоростью до 120 км/ч. При таком опорно-возвращающем устройстве возможен устойчивый максимальный поворот тележки (с учетом относа) относительно кузова до 5°, а упругое опирание кузова позволяет получить дополнительный прогиб до 20 ммв рессорном подвешивании тепловоза.
Сила тяги от рамы тележки на кузов передается шкворневым узлом, обеспечивающим поперечную свободноупругую подвижность шкворня кузова ±40 мм. Шкворень также является осью поворота тележки в горизонтальной плоскости. Вследствие минимального одинакового значения поколесной базы тележки 1850х2 мм и рядного расположения двигателей шкворневой узел размещен на продольной балке, расположенной над боковинами рамы тележки. Хотя такое расположение устройства передачи силы тяги и снижает ее реализацию, но благодаря рядному расположению двигателей, сосредоточению основного прогиба рессорного подвешивания в первой ступени, поводковых бесчелюстных букс и упругого опирания кузова на раму тележки теоретический коэффициент использования сцепной массы тепловоза составляет 0,89, что значительно выше по сравнению с тепловозами 2ТЭ10Л, ТЭЗ, 2М62.Тележка тепловоза прошла всесторонние испытания по своим динамико-прочностным и по воздействию на путь качествам   при участии ведущих научно-исследовательских институтов. По результатам испытаний были доведены:
прочностные качества корпусов букс, рамы тележки до обеспечения коэффициентов запаса прочности не менее 2;
показатели надежности и долговечности тягового редуктора до 1,2—1,8 млн. км пробега за счет замены жесткой зубчатой передачи с модулем 11 мм на передачу с модулем 10 мм и упругим зубчатым колесом;
показатели вертикальной и горизонтальной динамики, обеспечивающие без ограничения по ходовой части экипажа прохождения тепловозом прямых, крутых кривых участков пути и стрелочных переводов в результате замены жестких опор кузова на комбинированные с резинометаллическими элементами роликовые опоры.
Обе тележки (передняя и задняя) тепловоза по своей конструкции одинаковы, за исключением наличия на передней рычажной передаче ручного тормоза, подножек для входа в тепловоз и привода скоростемера. Ниже приведены конструктивные исполнения основных узлов и деталей тележки, их эксплуатационно-ремонтные особенности.
Рама тележки
Рама тележки предназначена для размещения колесно-моторных блоков с рессорным подвешиванием, тормозного исполнительного оборудования, опорных устройств надтележечного строения и механизма передачи силы тяги на кузов тепловоза. При эксплуатации рама тележки, кроме статических нагрузок от веса кузова с оборудованием, силы тяги (торможения) и реакций от тяговых двигателей, подвергается большим динамическим вертикальным и горизонтальным нагрузкам. Поэтому конструкция рамы тележки по основным элементам должна иметь на основании эксплуатации тележечных локомотивов и принятой ВНИИЖТ методике расчета коэффициент запаса прочности не менее 2 и 1,2 по пределу текучести материала при проверке ее на возможное соударение с продольным ускорением до 3g.

Рис.6. Рама тележки.
На рисунке показана рама тележки сварной конструкции. Основу рамы образуют две боковины 7 и 14, жестко связанные поперечными балками 8, 10 и 12, переднее концевое крепление 6 и шкворневая балка 11.Боковина в поперечном сечении представляет собой замкнутый профиль коробчатого сечения, сварена из стальных листов толщиной: боковых 10 мм, верхнего 14 мм, нижнего 22 мм. Сверху на боковины установлены платики 15 опор, снизу приварены литые кронштейны 5 и сварно-штампованные 4 с трапециевидными пазами для крепления буксовых поводков и установки опор пружин. Для повышения усталостной прочности (снижение коэффициентов концентрации) к нижнему несущему листу боковины кронштейны приварены внахлестку фланцами, имеющими минимальную толщину и параболическую форму поперечных граней. Кроме того, после приварки кронштейнов зоны основания сварных швов подвергают механическому упрочнению с помощью наклепа. Внутри боковин установлены диафрагмы, приваренные к боковым листам, для увеличения жесткости сечения в местах примыкания поперечных балок междурамного крепления. Снаружи на боковые листы боковин приварены через подкладки корпуса 1 фрикционных гасителей колебаний, кронштейны 2тормозных цилиндров и имеются сквозные овальные отверстия, усиленные полыми вставками 9, для прохода горизонтальных рычагов рычажной передачи тормоза.
Поперечные балки 8, 10 и 12 междурамного крепления сварной конструкции также замкнутой коробчатой формы выполнены из стальных листов толщиной 14 мм и жестко связывают между собой боковины. Своими вертикальными ребрами поперечные балки приварены к внутренним боковым листам и специальным выступам нижних листов боковин. Сверху приварены проставочные листы 13, которые связывают поперечные балки с верхними листами боковин, образуя замкнутое сварное междурамное крепление. К нижним листам поперечных балок приварены литые кронштейны 3 для опор электродвигателей.
На средние балки междурамного крепления сверху строго на продольной оси рамы установлена и закреплена с помощью электросварки продольная литая шкворневая балка 11. Шкворневая балка имеет в средней части массивное шкворневое гнездо и развитые горизонтальные полки по концам для повышения жесткости ее крепления, так как через нее и шкворень передается сила тяги на раму кузова. В шкворневом гнезде монтируется подвижной в поперечном направлении шкворневой узел тележки, а в боковых стенках гнезда выполнены отверстия для установки пружинных комплектов упругих упоров шкворневого узла.
Переднее концевое крепление 6 выполнено сварным коробчатого сечения неотъемным, но изогнутым в средней части для удобства демонтажа фрикционного аппарата автосцепки. Оно своими торцами с помощью электросварки сопрягается с боковинами, связывая их для придания жесткости конечной части рамы тележки, и несет на себе кронштейны тормозной рычажной передачи тележки. Боковины, междурамные крепления, концевые балки изготовляют отдельно, подвергают термообработке (отжигу) для снятия напряжений от сварки и затем их сваривают. На собранную и сваренную из основных узловраму устанавливают и приваривают шкворневую балку 11 с окончательной механической обработкой по шкворневому узлу, корпуса 1 фрикционных гасителей колебаний, кронштейны 2 тормозных цилиндров и подвесок рычажной передачи тормоза, платики 15 под установку опор кузова. Затем производят ее механическую обработку по кронштейнам 5 и 4 крепления буксовых поводков и опор пружин с протяжкой трапециевидных пазов и по платикам 15 под установку опор кузова.
На каждую окончательно готовую раму тележки составляют паспорт, где отражается качество металла, сварных швов и их структура, монтажно-установочные размеры. Основные сварные соединения подвергают дефектоскопии (ультразвуковой, рентгеновской). Сварочные дефекты (трещины, непровары и включения с надрезом) не допускаются как весьма опасные для эксплуатации сварной конструкции рамы тележки, которая связана с безопасностью движения, работает в условиях высокой динамической нагруженности и должна обеспечивать надежную работу в течение всего срока службы тепловоза.
Колесные пары и буксы
Колесные пары тепловоза воспринимают и передают на рельсы массу кузова и тележек со всем оборудованием, а также собственную массу с деталями, смонтированными непосредственно на колесных парах (неподрессоренную). При движении тепловоза каждая колесная пара, взаимодействуя с рельсовой колеей, воспринимает удары от неровностей пути и направляющих сил и в свою очередь сама жестко воздействует на путь. Кроме того, колесной парой передается вращающий момент тягового электродвигателя, а в месте контакта колес с рельсами реализуется сила тяги и торможения. Величина и характер воздействия статических и динамических сил зависят от условий движения и состояния рельсового пути, конструкции и параметров ходовой экипажной части тепловоза.

Рис.11. Унифицированная колесная пара.
1-зубчатое колесо; 2-шейка оси под моторно-осевой подшипник; 3-средняя
часть оси; 4-диск колесного центра; 5-обод колесного центра; 6-подступич-
ная часть оси; 7-центровое отверстие; 8-предподступичная часть оси;
9-шейка оси под буксовый подшипник; 10-ступица колесного центра; 11-бан-
даж; 12-бандажное кольцо.
Таким образом, колесная пара является одним из ответственных узлов ходовой экипажной части, от состояния которой зависит безопасность движения поездов. В связи с этим к выбору материала, изготовлению отдельных элементов и формированию колесной пары предъявляются особые требования. В условиях эксплуатации за состоянием колесных пар необходимы тщательный уход, своевременные осмотры и ремонт. Унифицированная колесная пара имеет ось, изготовляемую из осевой стали. На оси имеются: буксовые шейки для установки подшипников букс; предподступичные части; подступичные части, на которые напрессовывают колесные центры и зубчатое колесо; шейки моторно-осевых подшипников; среднюю часть. Все переходы с одного диаметра оси на другой во избежание концентрации напряжений выполняют плавными переходными галтелями радиусом 20- 60 мм. Подступичные части и шейки оси упрочняют накаткой стальными роликами при усилии на ролик 30 40 кН (3- 4 тс), создавая тем самым в поверхностном слое высокие остаточные напряжения сжатия, которые в 1,5- 2 раза повышают предел выносливости оси в зонах неподвижных посадок и делают ось менее чувствительной к концентрации напряжений. Глубина упрочненного слоя после накатки достигает 6-7мм, поверхностная твердость металла повышается на 25- 30 °/о. Шейки осей накатывают сферическими роликами, затем шлифуют или подвергают обработке цилиндрическим роликом для сглаживания поверхности. На концах оси выполнены: кольцевая канавка для установки стопорного кольца, предохраняющего внутреннее кольцо роликового буксового подшипника от сползания с шейки; проточка, на которую напрессовывается кольцо подшипника осевого упора буксы. В торцах оси выполнены центровые отверстия нормативных размеров, позволяющие в процессе эксплуатации производить обточку колес для восстановления профиля бандажей колесных пар и устанавливать вкладыши-втулки привода скоростемера, датчиков электродинамического тормоза и гребнесмазывателей. На пояске торца оси наносят знаки: дата и номер завода-изготовителя, номер плавки, порядковый номер оси, клейма ОТК и приемщика МПС.
1762125000
 
Рис.12. Клейма на торце оси:                                  
1-клеймо приемщика МПС; 2-условный номер пункта, перенесшего знаки; 3-условный номер завода-изготовителя; 4-месяц изготовления оси; 5-год изготовления оси; 6-номер плавки;7-номер оси; 8-клеймо ОТК; 9-знак формирования колесной пары; 10-условный номер ремонтного пункта; 11-клеймоОТК; 12-клеймо приемщика МПС; 13-месяц форми- рования колесной пары;14-год фор- мирования колесной пары.
Зубчатое колесо тягового привода насаживают на ось в нагретом состоянии до температуры ступицы не более 443 К (170"С)с натягом 0,16—0,22мм. Для предупреждения коррозии посадочных поверхностей их покрывают лаком марки ВД4-3 или ГЭН-150.
9048751841500
Рис.13. Колесная пара с электродвигателем ЭД-118Б:
1-лабиринтное кольцо уплотнения циркуляционной системы смазки;
2-зубчатое колесо привода насоса смазки.
 
Оси колесных пар под тяговые электродвигатели ЭД-118Б, ЭД-125Б с циркуляционной системой смазки осевого подшипника в средней части имеют утолщение для крепления венца зубчатого колеса привода насоса смазки. Шейки оси под осевые подшипники двигателей выполнены диаметром 210мм вместо 215мм для ЭД-118А. На выходах шеек напрессовывают лабиринтные кольца уплотнения циркуляционной системы смазки.        
Рессорное подвешивание
Рессорное подвешивание тепловоза предназначено для уменьшения динамического воздействия колес на рельсы при движении по неровностям пути, обеспечения плавности хода тепловоза и передачи массы кузова и тележек на колесные пары. С другой стороны, рессорное подвешивание облегчает задачу правильного распределения нагрузки от массы тепловоза между колесными парами, а также обеспечивает частичную передачу горизонтальных сил со стороны колес на раму тележки.
Подвешивание тепловоза выполнено одноступенчатым, одинарным (только пружины) и индивидуальным для каждого буксового узла колесной пары. Оно состоит из 12 одинаковых групп (по шесть групп для каждой тележки), имеющих два одинаковых пружинных комплекта, установленных между опорными кронштейнами корпуса буксы и кронштейнами рамы тележки. Параллельно каждому буксовому рессорному подвешиванию устанавливают фрикционный гаситель колебаний.
Пружинный комплект  составляют три пружины: наружная 2, средняя 3, внутренняя 4, две опорные плиты 1 и 5 и регулировочные прокладки 6. Для исключения касания и заскакивания витков одной пружины между витками другой при их концентрическом расположении внутреннюю пружину размещают в наружной с зазором не менее 5 мм на сторону, причем пружины должны быть навиты в разные стороны. Пружины рессорного подвешивания изготавливают из круглого калиброванного проката горячекатаной пружинной стали 60С2А диаметров: для наружных пружин — 36 мм, для средних — 23 мм, для внутренних — 16 мм. Твердость пружин в термообработанном состоянии должна быть ПК С 40—47. После термообработки пружины упрочняют наклепом дробью.

Рис.7. Пружинный комплект рессорного подвешивания:
1, 5 — опорные плиты; 2, 3, 4 — пружины; 6 — регулировочные прокладки; 7 — опорный кронштейн на раме тележки; 8 — технологическая шайба; 9 — технологический болт; 10 — корпус буксы
Статическая нагрузка на пружинный комплект воспринимается пружинами: наружной — 65 %, средней — 23 % и внутренней — 12 %. Предельная нагрузка с учетом 7 % перегруза и динамического прогиба составляет для наружной пружины 40 кН (4 тс), средней — 15 кН (1,5 тс), внутренней — 8 кН (0,8 тс). При действии этих нагрузок в витках при их полном смыкании напряжения не превышают предела текучести материала пружин при кручении, равного 750 МПа (7500 кгс/см2).
При индивидуальном подвешивании значения жесткости и высоты в свободном состоянии пружин между комплектами не должны значительно отличаться, иначе возникает неравенство статических нагрузок, передаваемых колесами на рельсы. С этой целью пружины разграничивают не три группы. Номер группы для пружинного комплекта определяют по номеру группы наружной пружины. Формируют комплекты следующим образом: если наружная пружина I группы, то внутренние — I или II; если наружная пружина II группы, то внутренние — I, II или III; если наружная пружина группы III, то внутренние — II или III. Перед установкой на тележку пружинные комплекты собирают и стягивают специальными технологическими болтами 9, которые после окончательной сборки тележки снимают. На одной тележке устанавливают пружинные комплекты только одной из групп.
Секция тепловоза может иметь тележки с пружинными комплектами рессорного подвешивания только одной группы или только I и II или II и III. Номер группы жесткости пружинных комплектов указывается в паспорте тепловоза для каждой секции. Колебания надрессорного строения, возникающие при движении тепловоза, гасятся с помощью фрикционных гасителей, включенных параллельно пружинным комплектам.
Фрикционный гаситель колебаний  имеет корпус 8, который установлен на раме тележки 15. Шток 4 одним концом упруго через амортизаторы 1, сухари 2 и обоймы 3 прикреплен к кронштейну буксы 14, а второй его конец аналогично соединен со стальным поршнем 5, зажатым пружиной 10 между двумя вкладышами 7. Вкладыши имеют накладки 6 из фрикционного материала — лента тормозная вальцованная толщиной 6—8 мм с коэффициентом трения по стали не менее 0,39. При колебаниях надрессорного строения происходит перемещение рамы тележки относительно колесной пары с буксой. Это вызывает перемещение поршня 5 между вкладышами 7, которые под воздействием пружины 10, установленной в крышке 11, создают по контактирующим поверхностям поршня гасителя силу трения, являющуюся активной силой демпфирования колебаний. Для предохранения от попадания пыли, влаги на рабочие поверхности гасителя сверху на корпус 8 устанавливают быстросъемный пластмассовый кожух 9.

 Рис.8. Фрикционный гаситель колебаний:
1 — амортизатор; 2 — сухарь; 3 — обойма; 4 — шток; 5 — поршень; 6 — фрикционная накладка; 7 —вкладыш; 8 — корпус гасителя; 5 —защитный кожух; 10 — пружина; 11 — крышка; 12 — гайка; 13 — шплинт; 14 — крышка буксы;Демпфирующие свойства гасителя оценивают величиной силы трения, которая составляет 4,65—5,2 кН (0,465—0,52 тс), или 5—5,5 % к подрессоренной массе, приходящейся на буксовый узел. На основании динамических испытаний тепловоза рекомендуется принимать силы трения в подвешивании в диапазоне 5—6 %, что соответствует коэффициенту демпфирования 4—5, представляющему собой отношение работы сил трения гасителей к работе упругих сил системырессорного подвешивания при изменении прогиба от нуля до статического.
Фрикционный гаситель имеет симметричную характеристику (одинаковая при движении вверх и вниз), не гасит вибрации (колебания с высокой частотой и небольшими амплитудами). Применяется гаситель на тепловозе для гашения вертикальных колебаний, которые могут развиваться с амплитудой ±30 мм и частотой до 2 Гц, и боковой качки подрессоренных масс и устанавливается в первой ступени подвешивания между подрессоренными (рама тележки) и неподрессоренными (букса) элементами ходовых частей экипажа. Гашение колебаний силой сухого трения, естественно, сопровождается интенсивным износом поршня гасителя, фрикционных накладок, линейный износ которых около 0,05 мм/ч. Поэтому эксплуатационного ресурса хватает по этим быстроизнашивающимся элементам гасителя не более чем на 400 тыс. км пробега тепловоза.
Повышение долговечности гасителей колебаний ведется в направлении уменьшения силы трения покоя, совершенствования кинематики привода гасителей, применения более износостойких фрикционных материалов и, наконец, гидравлических гасителей колебаний вязкостного трения. В этих гасителях сила сопротивления создается жидкостным трением полиметалсилоксановой жидкости марки ПМС-800000, имеющей кинематическую вязкость 0,8 м2/с (800 000 сет) в щелевом с радиальным зазором 0,20—0,65 мм четырех камер ном лабиринтном пространстве, образованном ротором и статором гасителя. Сила сопротивления пропорциональна ширине зазора и изменяется от скорости нелинейно (регрессивная характеристика). Привод ротора гасителя осуществляется кривошипношатунным упругим механизмом от буксового узла ходовой части экипажа. Ротационными жидкостного трения гасителями колебаний оборудована опытная партия тепловозов 2ТЭ116 и проходит эксплуатационные ресурсные испытания.
Опорно-возвращающее устройство и устройство передачи силы тяги
Опорно-возвращающее устройство тепловоза воспринимает массу всего надтележечного строения, обеспечивает устойчивое положение тележки под тепловозом при его движении, а также плавное вписывание в кривые и создание необходимых усилий, возвращающих кузов тепловоза в первоначальное положение при перемещении его относительно тележек при движении в кривых. Для равенства нагрузок от колесных пар тележек на рельсы передние опоры расположены вокруг шкворня на радиусе 1632 мм, задние — на радиусе 1232 мм. Надтележечное строение тепловоза опирается на раму тележки через четыре комбинированные опоры, состоящие каждая из двух ступеней: нижняя жесткая ступень — роликовая опора качения, верхняя упругая — блок, содержащий семь резинометаллических элементов (РМЭ).

Рис.9.  Комбинированная опора:
1, 16 — верхняя и нижняя опорные плиты; 2 — крышка;  4, 6 - опорные кольца; 5 — упругий элемент; 7 — регулировочные прокладки; 8 — конический стакан; 9, 10 — хомуты, 11— чехол; 12 — пробка; 13 — сливная пробка; 14 — рама тележки; 15 — обойма; 17 — ролик; 18 - втулка; 19 — корпус роликовой опоры
Роликовая опора состоит из литого корпуса 19, который установлен на боковине рамы тележки по касательной к радиусу поворота тележки, обеспечивая ее поворот на опорах качения нижней опорной плиты 16, роликов 17, связанных между собой обоймами 15, и верхней опорной плиты 1. Ролики вращаются в обоймах с неметаллическими втулками 18, которые являются подшипниками для роликов. Вся подвижная система опоры: ролики с обоймами, верхняя опорная плита при перемещениях направляется приваренными к боковым стенкам корпуса износостойкими накладками, изготовленными из стали 65Г. На поверхности качения роликов и опорных плит возникают высокие контактные напряжения, поэтому ролики изготавливают из стали 40Х и подвергают поверхностной на глубину 1,5—Змм закалке. Опорные плиты предварительно цементируют, затем поверхность закаливают. Поверхности качения опорных плит выполнены наклонными: угол наклона составляет 2°. На прямом участке пути ролики занимают среднее положение между наклонными плоскостями. При повороте тележки относительно кузова ролики накатываются на наклонные поверхности опор. При этом возникают горизонтальные силы, создающие на радиусе опор возвращающий момент. Кроме возвращающих сил, при повороте тележек в опоре возникают силы трения и момент сил трения, который способствует уменьшению колебаний виляния тележек. Ход роликовой опоры составляет ±80 мм.
Упругая ступень комбинированной опоры содержит семь упругих элементов 5, расположенных между опорным кольцом 6 роликового устройства на тележке и опорным кольцом 4 на кузове тепловоза. Упругий комплект ограничен коническим стаканом 8 с обеспечением зазора, превышающего наибольший относ кузова, который происходит при прохождении тепловозом кривой радиусом 125 м. Упругий элемент 5 представляет собой резиновую шайбу, привулканизированную к стальным пластинам, имеющим выштампованные кольцевые зацепы для исключения поперечного сдвига элементов в комплекте и в соединениях с опорными плитами. Каждый комплект резинометаллических элементов комбинированной опоры подвергается тарировочной правке на стенде по определению его высоты под нагрузкой, при этом также проверяется качество изготовления элементов. Вертикальная жесткость комплекта резинометаллических элементов составляет 55 • 10б Н/м (550 кгс/мм), а горизонтальная жесткость — 2 • 10б Н/м (20 кгс/мм). В пределах тележки отклонение по высоте комплектов допускается не более 1 мм и обеспечивается установкой регулировочных прокладок 7 под опорную часть кузова.
Внутреннюю полость роликовой опоры заполняют осевым маслом. Масло в опору заливают через пробку 12, а слив масла и промывка опоры производятся через пробку 13. Роликовая опора закрыта крышкой 2, которая предохраняет от выплескивания масла из опоры ее подвижной системой. Для предотвращения попадания в комбинированную опору посторонних предметов и атмосферных осадков она закрыта чехлом 11, закрепленным на корпусе роликовой опоры и защитном кольце кузова хомутами 9 и 10.
Каждая комбинированная опора по отношению к центру поворота тележки установлена так, что роликовой частью обеспечивается поворот тележки и возвращающий момент, а поперечное перемещение кузова (относ) достигается за счет поперечного сдвига каждого комплекта резинометаллических элементов. Предельный сдвиг комплекта резинометаллических элементов составляет ±45 мм. Упругое оиирание кузова позволяет получить дополнительный прогиб до 20 мм в рессорном подвешивании тепловоза и тем самым улучшить динамикопрочностные показатели ходовых частей экипажа тепловоза.
Устройство передачи силы тяги с тележки на кузов выполнено шкворневым с поперечной свободноупругой подвижностью ±40 мм для улучшения условий вписывания и показателей горизонтальной динамики при движении тепловоза, а также уменьшения рамных давлений на рельс и обратного воздействия массы тележки на кузов. Шкворень также является осью поворота тележки в горизонтальной плоскости.
 
      Конструкция шкворневого узла тепловоза представлена на рисунке. Шкворень 7 литой конструкции приварен к главной раме 2 тепловоза. При установке надтележечного строения тепловоза на тележки нижняя часть шкворня с приваренной стальной втулкой 8 входит по легкоходовой посадке во втулку 6 ползуна 5, на пяти поверхностях которого (на нижнем основании, поверхностях, перпендикулярных и параллельных оси тележки) приварены планки 4, 11, 15, изготовленные из стали 60Г и термообработанные. Ползун вмонтирован в гнездо литой шкворневой балки 12 рамы тележки. На внутренних поверхностях гнезда шкворневой балки перпендикулярно к продольной оси тележки и днищу приварены планки 13 и 14, также изготовленные из стали 60Г и термообработанные, по которым ползун установлен с зазором в пределах 0,14—1,42 мм и перемещается в гнезде на ± 40 мм в поперечном направлении.

Рис.10.  Шкворневой узел.
При поперечном перемещении шкворня ползун упирается в упор 3, который перемещается во втулке 16, запрессованной в гнездо, и через свой бурт сжимает пружину 1, помещенную в боковой цилиндрический стакан 17, закрепленный снаружи гнезда шкворневой балки. На противоположной стороне гнезда шкворневой балки установлено аналогичное упорно-возвращающее шкворневое устройство. Каждый стакан закреплен четырьмя болтами М24, от отворачивания болты попарно законтрены проволокой. Пружины 1 установлены без создания предварительного усилия (с зазором 0,5 мм). Жесткость пружин составляет 40 - 105 Н/м (400 кгс/мм).
Гнездо шкворневой балки заполняется осевым маслом и закрывается сверху неподвижной крышкой 10, имеющей четыре направляющих кронштейна, в котдрых перемещается подвижная крышка 9. Уровень масла контролируется по уровню в масленке на трубе, подводящей смазку.
Конструкция шкворневого узла позволяет при вписывании тележки тепловоза в кривой участок пути перемещаться шкворню на величину 40 мм в одну и другую сторону в поперечном направлении, из которых при перемещениях до 20 мм возвращающий эффект создается только за счет поперечного сдвига комплектов резинометаллических элементов комбинированных опор, а при дальнейшем он увеличивается за счет включения в работу пружины шкворневого узла. При перемещении шкворня на 40 мм (сжатие пружин 20 мм) возвращающее усилие пружины равно 80 кН (8 тс). При такой поперечной шкворневой связи кузова с тележками в сочетании с комбинированными опорами, а также упругой связью колесных пар с тележками достигается уменьшение рамных давлений на рельс и обратного воздействия масс тележки на кузов по сравнению с тепловозами с жесткими опорами и не имеющими свободно-упругого разделения масс кузова и тележек. В результате проведенных динамических и по воздействию на путь испытаний тепловоза было получено: максимальный коэффициент горизонтальной динамики 0,26, который по условию устойчивости поперечному сдвигу рельсо-шпальной решетки на щебеночном балласте должен быть не более 0,4; наибольший коэффициент вертикальной динамики 0,3, что меньше допустимого значения (0,35) для новых локомотивов; улучшенные наибольшие значения показателей горизонтальной динамики по воздействию на путь. Это позволило увеличить допустимую скорость движения тепловоза по стрелочным переводам.
Колесно-моторный блок
Колесно-моторный блок осуществляет кинематическую и силовую связь между тяговым электродвигателем и колесной парой тепловоза. Он выполнен с опорно-осевой подвеской тягового электродвигателя ЭД-118А и односторонней зубчатой передачей. Тяговый электродвигатель одной стороной жестко опирается на ось колесной пары через моторно-осевые подшипники, а другой стороной — опорным приливом упруго через пружинную подвеску на раму тележки. При такой подвеске практически половина массы тягового электродвигателя жестко связана с необрессоренными массами колесной пары и составляет на одном блоке около 4250 кг.
Вращающий момент тягового электродвигателя передается на колесную пару через одноступенчатую зубчатую передачу: шестерню, напрессованную на вал якоря и находящуюся в постоянном зацеплении с упругим зубчатым колесом колесной пары. Шестерня и зубчатое колесо закрыты кожухом, который крепится болтами в трех точках к остову электродвигателя. От попадания пыли и влаги торец моторноосевого подшипника со стороны коллектора электродвигателя закрыт хомутом, который выполнен в виде двух полуколец, армированных войлоком. Торец моторно-осевого подшипника со стороны зубчатой передачи находится в контакте со ступицей зубчатого колеса. Для улучшения смазывания торцовых поверхностей на торцах передних половин вкладышей выполнены по две прорези, в которые при сборке устанавливают войлочные полосы 6х10х160 мм. Общее перемещение тягового электродвигателя относительно оси .должно быть не более 1,2 мм.
     Моторно-осевые подшипники  имеют разъемные вкладыши 16, изготовленные из бронзы. Положение вкладышей в корпусе электродвигателя фиксируется шпонкой. Верхние вкладыши  вкладывают в остов двигателя, нижние  с вырезом 180х60 мм для подвода смазки прижимаются корпусами подшипников 8, которые имеют камеры для размещения смазывающего польстерного устройства, четырьмя болтами 18 каждый, момент затяжки болтов — 1250—1420 Н • м (125—142 кгс  м). Вкладыши осевых подшипников левой и правой сторон электродвигателя взаимозаменяемы.

Рис.18.  Моторно-осевой подшипник:
1, 2 – оси; 3 – фиксатор; 4 – поплавок; 5 – втулка; 6 – крышка; 7 – пробка; 8 – крышка моторно-осевого подшипника; 9 – пружина; 10 – рычаг; 11 – пластинчатая пружина; 12 – корпус; 13 – скоба; 14 – коробка; 15 – пакет польстерный; 16 – вкладыш; 17 – постель моторно-осевого подшипника; 18 – болт. 
Во избежание повышенных краевых по вкладышам давлений от прогиба оси колесной пары расточку внутренней поверхности вкладышей выполняют по гиперболе. Разность диаметров гиперболической расточки на краях рабочей поверхности вкладышей и в средней части составляет 1 мм. Строительный диаметральный зазор в осевом подшипнике по вершине гиперболы составляет 0,5—0,86 мм. В процессе эксплуатации допускается увеличение зазора до 1,8мм и производить восстановительную расточку вкладышей следует в виде корсета.
Смазывание моторно-осевых подшипников осуществляется польстерным устройством, укрепленным на дне корпуса подшипника 8. Элементом, подающим смазку к узлу трения, является польстерный пакет (фитиль) 15. Он собран из трех пластин тонкошерстного каркасного войлока размерами 13х157х190 мм. Каждая пластина состоит из четырех спрессованных слоев тонкошерстного войлока, между которыми проложена шерстяная ткань, состоящая из 50 % шерсти и 50 % штапельно-вискозного полотна. В качестве заменителя, как показал опыт эксплуатации, польстерный пакет можно собирать из двух войлочных пластин 8х157х190 мм и 12 хлопчатобумажных фитилей шириной 80 и длиной 200 мм, уложенных между ними в два ряда. Польстерный пакет 15 закреплен в подвижной коробке 14 с выступанием рабочего торца пакета на 16±1 мм относительно кромки коробки. Коробка для обеспечения ее перемещения без перекосов и заеданий в направляющих корпуса  подпружинена четырьмя пластинчатыми пружинами по две снизу и сверху. Каждая пластинчатая пружина одним концом прикреплена к коробке и имеет возможность свободно перемещаться в пазе корпуса коробки при ее деформации. Коробка с польстерным пакетом в направляющих корпуса  постоянно поджимается усилием 40—60 Н (4—5 кгс) винтовыми пружинами 9 посредством рычага 10 через окно во вкладыше  к шейке оси колесной пары. Рычаг 10 и пружины 9 закреплены осями на корпусе . Для удержания рычага в поднятом положении при проведении работ, связанных с выемкой польстерного пакета, на ось  установлен пружинный фиксатор 3, свободный конец которого выполнен такой длины и конфигурации, что при неопущенном в рабочее положение рычаге 10 он не дает возможности установить крышку  на корпус подшипника .
Масляная ванна корпуса подшипника в нижней части имеет отстойник для конденсата со сливной пробкой , а сверху она закрыта через паронитовую прокладку крышкой . Заполняется масляная ванна через отверстие в боковой стенке корпуса подшипника осевым маслом Л, 3 и С в зависимости от времени года и местности эксплуатации тепловоза. С целью устранения возможности переполнения маслом корпуса подшипника и перетекания его в кожух тягового редуктора кромка заправочного отверстия определяет наибольший уровень смазки, соответствующий 6 л. Наименьший допустимый уровень смазки контролируется риской на щупе маслоуказателя, закрывающем заправочное отверстие польстерной камеры осевого подшип- ника.
В целях дальнейшего повышения работоспособности осевых подшипников, особенно при эксплуатации в северных районах, тепловозы оборудуются электродвигателями ЭД-181Б с циркуляционной системой смазывания. В целом колесно-моторные блоки с ЭД-118А и ЭД-118Б взаимозаменяемы на тележках тепловоза.
Циркуляционная система смазывания осевых подшипников представляет собой замкнутый круг циркуляции масла через вкладыши осевых подшипников. Круг циркуляции масла образован установкой на тяговом электродвигателе 1 единого осевого подшипника 2, который включает в себя две польстерные камеры 3, 9 и в нижней средней части маслосборник 15 вместимостью 35 л, соединенные через подшипники системой каналов. В маслосборнике на крышке 10 установлены шестеренный насос 13, который приводится в действие от оси колесной пары через шестерню 11, выполненную резъемной для монтажа и демонтажа без расформирования колесной пары, и зубчатое колесо 12, установленное на валу насоса. Зацепление зубчатой передачи привода насоса регулируется прокладками 16 крышки и устанавливается с увеличенным боковым зазором до 1 мм на компенсацию износа вкладышей осевого подшипника в процессе эксплуатации.

Рис.19. Система  смазывания  осевого  подшипника  электродвигателя ЭД-118Б:
1-тяговый электродвигатель; 2-осевой подшипник; 3,9-польстерные камеры; 4,8-сливные пробки из польстерных камер; 5-контрольная пробка; 6-пробка заправочного отверстия; 7-сливная пробка маслосборника; 10-крышка; 11-шестерня; 12-зубчатое колесо; 13-насос; 14,20-болты; 15-маслосборник; 16- прокладка; 17-польстсрное смазывающее устройство; 18-вкладыш с окном подачи смазки; 19-корпус польстсра; В, Г-каналы подачи смазки в польстерные емкости; Д-канал отвода смазки из осевого подшипника;В польстерные камеры вместимостью 5 л каждая устанавливают польстерные смазывающие устройства 17, полностью унифицированные с ЭД118А. Камеры левой и правой сторон сообщаются через канал Г на уровне нижних кромок окон вкладышей 18. При движении тепловоза масло, нагнетаемое насосом по системе каналов в подшипнике, поступает в польстерные камеры, откуда самотеком через окна во вкладышах проникает в зазор между шейкой оси колесной пары и вкладышем, далее по каналам Д сливается в маслосборник, замыкая круг циркуляции. В момент трогания и до скорости 25 км/ч, когда насос не обеспечивает подачу достаточного количества масла, смазывание подшипника в основном осуществляется польстерным устройством, как на ЭД118А.
Для уменьшения потерь масла из круга циркуляции и исключения возможности попадания в него смазки тяговой зубчатой передачи, а также влаги и пыли из атмосферы вкладыши выполнены за одно целое с комбинированным контактно-лабиринтным уплотнением. Кроме того, вкладыши выполнены биметаллическими с баббитовой заливкой на бронзовой основе для лучшей приработки и во избежание задиров шеек осей колесных пар. Расточка внутренней поверхности вкладышей также производится по гиперболе, но под шейки осей диаметром 210 мм, чтобы сохранить жесткость биметаллических вкладышей на уровне бронзовых.
Систему смазывания заправляют осевым маслом. Масло заливают в польстерные камеры по нижнюю кромку окна вкладыша, а в маслосборник — по кромку заправочного отверстия 6. В процессе эксплуатации работу насоса проверяют через контрольную пробку 5.
    Тяговый редуктор тепловоза предназначен для повышения вращающего момента, передаваемого тяговым электродвигателем на колесную пару, и обеспечения заданной длительной и конструкционной скоростей движения тепловоза.
Зубчатая передача редуктора при опорно-осевом подвешивании тягового электродвигателя работает в тяжелых условиях, обусловленных переменными режимами работы и динамическими нагрузками, перекосом зубчатых колес от деформации оси и вала якоря, а также перекосом остова тягового электродвигателя вследствие зазоров в осевом подшипнике, которые в эксплуатации могут достигать 2 мм и более. Для обеспечения надежности и увеличения срока службы редуктора зубчатое зацепление выполнено с самоустанавливающимся зубчатым венцом упругого колеса. Венец и ведущую шестерню изготавливают из легированных сталей.
Колесные центры унифицированной колесной пары изготовлены из стальной отливки и состоят из ступицы, обода и диска.
-1047754762500Рис.14. Колесный центр:
  1-ступица; 2-диск; 3-обод.
Отлитые центры для получения однородной и мелкозернистой структуры металла и снятия внутренних напряжений подвергают отжигу. Колесные центры напрессовывают на ось с усилием 1100—1500 кН (ПО— 150 тс) при насаженных и 950—1400 кН (95—140 тс) при ненасаженных бандажах. Натяг между посадочными поверхностями составляет 0,18— 0,3 мм. Действительный натяг и качество прессового соединения определяют по диаграмме усилий, снимаемой при запрессовке. Диаграмму прикладывают к паспорту каждой колесной пары.
Катаные колесные центры применяют как опытные. Их также подвергают термической обработке. Применение катаных колесных центров позволяет снизить массу (неподрессоренную) до 45 кг на каждом центре и уменьшить динамическое воздействие на рельсовый путь.
      Бандажи являются той частью колес, которая непосредственно взаимодействует с рельсами. На контактную площадку бандажа передаются вертикальные силы до 150 кН (15 тс), продольные силы сцепления до 45 кН (4,5 тс) и поперечные — до 30 кН (3 тс) на поверхности катания и до 80 кН (8 тс) на гребень. Материал бандажа подвергается растяжению, сжатию, сдвигу и смятию, а при скольжении колес усиленному износу. В связи с этим материал бандажа должен обладать высокой прочностью, чтобы сопротивляться износу и смятию, и быть достаточно вязким, чтобы сопротивляться ударным нагрузкам. Бандажи подвергают термической обработке путем закалки и последующего отпуска. На наружные диаметры колесных центров насаживают бандажи с натягом 1,1 — 1,45мм тепловым способом. Температура нагрева бандажа 523-593 К (250—320°С). Разность температур различных участков бандажа при нагреве не должна 040005000превышать 323 К (50°С).
 
Рис.15. Бандаж: 1-колесный центр; 2-бандаж; 3-бандажное кольцо;
 
 Бандажи на колесных центрах закрепляют бандажными кольцами. Бандажные кольца заводят в специальную выточку, когда температура бандажа не ниже 473 К (200° С), и закатывают роликом на специальном станке внутреннюю кромку бандажа до плотного крепления кольца. На собранной колесной паре разность твердостей бандажей не должна превышать НВ20.
После остывания проверяют (по звуку) плотность посадки бандажа на колесный центр. Для контроля отсутствия проворачивания бандажей колесной пары относительно колесных центров при эксплуатации тепловоза на бандажах и колесных центрах наносят контрольные риски и кернение. Окончательная обточка бандажей по профилю производится после их насадки.
Для обеспечения безопасности движения и стабильных качеств ходовой части тепловоза предельный прокат поверхности катания не должен превышать 7 мм, износ гребня — 8 мм (толщина 25 мм) и минимальная толщина бандажей колесных пар по кругу катания — 36 мм. Интенсивность образования проката характеризуется износом в мм на 104 км пробега тепловоза и зависит от степени использования мощности, профиля пути, нагрузки от колесной пары на рельсы и других -635-83629500факторов.
Опыт эксплуатации показал, что интенсивность проката колес тепловозов для среднесетевых условий составляет 0,38 мм на 104 км пробега. Интенсивность износа гребня при протяженности кривых на участке эксплуатации около 50 % составляет 0,8 мм на 104 км пробега. Это вызывает необходимость преждевременной обточки колес для восстановления профиля бандажей по износу гребней. Толщина слоя снимаемого металла, определяемая по износу гребня, значительно больше, чем это требуется для восстановления профиля поверхности катания. Срок службы бандажей сокращается.
С целью уменьшения износа гребней бандажей и увеличения срока их службы ВНИИЖТом предложен новый объединенный профиль локомотивов и вагонов. Объединенный профиль снижает давление в контакте и обеспечивает относительно свободное поперечное перемещение колесной пары в колее. Угол наклона образующей гребня к горизонту составляет 65°. Радиус выкружки гребня 15 мм, согласованный с радиусом скругления рельсовой головки, обеспечивает наименьшее контактное давление на выкружке гребня.
Испытания показали, что бандажи с объединенным профилем будут иметь меньший на 20—30 % износ гребней по сравнению со стандартным. Износ по кругу катания остается на уровне стандартного профиля.
     Буксы передают вертикальные и горизонтальные (тяги и торможения, поперечные от набегания на рельс) силы между рамой тележки и колесными парами. Кроме того, буксы ограничивают продольные и поперечные перемещения колесной пары относительно рамы тележки. Вертикальные статические нагрузки на буксы достигают 100—ПО кН (10—11 тс), а при движении тепловоза они возрастают в 1,3—1,5 раза. Одновременно на буксовые узлы действуют продольные тяговые и тормозные усилия около 20—25 кН (2—2,5 тс), удары колес на стыках, вызывающие ускорения букс (7—25g), и рамные усилия до 50—75 кН (5—7,5 тс) при частоте осевого нагружения 1,5—2,0 Гц. Совокупностью этих действующих сил определяется конструкция буксового узла, которая должна обеспечивать прежде всего безопасность движения, эксплуатационную долговечность подшипников не менее 1,8 млн. км пробега.
Конструкция буксового узла показана на рисунке.
 Корпус 9 буксы с двумя кососимметрично расположенными поводками 2 соединен с рамой тележки. Соединение валиков поводков с корпусом буксы и рамой тележки производится посредством клиновых соединений и болтами 1. Литой корпус буксы имеет также и два боковых опорных кронштейна (крыла) для установки пружин рессорного подвешивания тележки и восприятия вертикальной нагрузки. В цилиндрическую расточку корпуса буксы до упора в заднюю крышку 6 установлены по скользящей посадке два роликовых подшипника и между ними дистанционное кольцо 10. С целью повышения срока службы подшипники устанавливают в одном буксовом узле с разностью радиальных зазоров не более 0,03 мм. Кроме того, потолок корпуса буксы выполнен в виде свода переменного сечения увеличенной толщины верхней части, что дает не только более равномерное распределение нагрузки между роликами, но и увеличение числа роликов, находящихся в рабочей зоне. На предподступичную часть оси до упора в галтель надето с натягом лабиринтное кольцо 3. Температура нагрева кольца 393—423 К (120—150° С). Лабиринтное кольцо образует с задней крышкой 6 четырехкамерное лабиринтное уплотнение буксы. Внутренние кольца подшипников имеют натяг 0,035—0,065 мм и насажены на шейку оси вместе с дистанционным кольцом 11 нагретыми в индустриальном масле до температуры 373—393 К (100—120 °С). Для предотвращения сползания с шейки оси внутренних колец роликоподшипников служит стопорное кольцо 12.

Рис.16. Буксовый узел:
1, 21 - болты;  2 - поводок;   3 - лабиринтное     кольцо;      4 - стопорный    болт;     6- задняя    крышка:    7, 22   - шелковый       шнур;      8 -роликоподшипник;   9 - корпус   буксы;    10, 11 —дистанционные кольца; 12,14- стопорные кольца; 13 кронштейн; 15 упорный шарикоподшипник;16- амортизатор, 17 -передняя крышка; 18 -пружина; 19 - упор; 20 -контровочная проволока; 23 - коническая пробка;
В передней крышке 17 монтируется осевой упор качения одностороннего действия через упорный шарикоподшипник, одно кольцо которого установлено на торцовой проточке оси, а другое — на упоре 19 с натягами 0,003—0,016 мм. В целях предотвращения раскрытия упорного подшипника он постоянно через упор 19 пружиной 18 прижимается с усилием около 2 кН (200 кгс) к торцу оси колесной пары. Осевой упор удерживается стопорным кольцом 14 в крышке 17 при ее снятии. Между упором и крышкой установлен амортизатор 16, представляющий собой две металлические пластины толщиной 2 мм с привулканизированным между ними резиновым элементом. В буксах средних колесных пар амортизатор не ставится, обеспечивая тем самым свободный осевой разбег ±14 мм (равный толщине амортизатора) этих колесных пар в буксах. На передней крышке приварен кронштейн 13 для присоединения гасителя колебаний.
Для того чтобы отличать буксы колесных пар от букс средних колесных пар, на крышках букс наносятся знаки «КР» для крайних и «СР» для средних. На задней крышке установлен стопорный болт 4, предотвращающий сползание буксы с шейки оси при снятой с тепловоза колесной паре.
Смазка для буксового узла единая пластичная. При сборке буксы закладывают смазку ЖРО в лабиринтное уплотнение задней крышки, подшипники и осевой упор передней крышки в количестве 2,5 кг. Дозаправка смазки в буксовый узел в процессе эксплуатации производится запрессовкой через отверстие с конической пробкой 23, расположенное в нижней части корпуса буксы.
   Поводок буксы  состоит из корпуса 7 с двумя головками, имеющими цилиндрические расточки, в которые запрессованы с натягом 0,06......0,16 мм амортизаторы, сформированные один на коротком, другой на длинном валике. Короткий валик 8 (буксовый) имеет одну резинометаллическую втулку 12. Длинный валик 5 (рамный) имеет две резинометаллические втулки 3, между которыми помещены разделяющие их полукольца 1.
1362075-34925000
Рис.17. Поводок буксы:
1,6-полукольца;   2,3,12,13 –резино-
металлические    втулки;    4 - штифт;    5 - рамный   валик; 7- корпус;  8- буксовый     валик;     9 - кольцо; 10- резиновый элемент; 11 - шайба
Амортизаторы формируют на валики напрессовкой. Перед напрессовкой резиновые втулки и все соприкасающиеся с ними поверхности смазывают смесью, состоящей из 30 % касторового масла и 70 % этилового спирта. Сформированные поводки выдерживают в течение 20 дней при температуре 288—293 К (15—30° С) без доступа света и приложения нагрузки для завершения релаксационного процесса сцепления резины с металлом. 
Валики имеют трапециевидные (клиновидные) хвостовики для установки их в соответствующие пазы на раме тележки и корпусе буксы. Крепятся хвостовики болтами М20х80, момент затяжки не менее 150 Н • м (15 кгс • м). На хвостовики валиков установлены с натягом торцовые амортизаторы, состоящие из кольца 9, шайбы 11 и привулканизированного к ним резинового элемента 10, и крепятся с помощью разрезных полуколец 6, вставляемых в выточки валиков. С поводками они соединяются штифтами 4, вследствие чего при повороте поводка в вертикальной плоскости резиновые элементы торцовых амортизаторов работают на сдвиг. Клиновидные хвостовики длинного и короткого валиков у верхних поводков имеют встречное направление, у нижних — попутное.
Коэффициент жесткости поводков одной буксы в поперечном направлении составляет 35 • 105—45 • 105 Н/м (350—450 кгс/мм), а в продольном — 235 • 105—275 • 105 Н/м (2350—2750 кгс/мм). Такая упругая поперечная связь между колесными парами и рамой тележки да еще в сочетании с буксовым осевым упором одностороннего действия значительно улучшает горизонтальную динамику тепловоза.
 
 Шестерня изготавливается из стали 12Х2Н4А. Поверхности зубьев и впадин шестерен цементируют на глубину 1,6—1,9 мм (после шлифовки) и подвергают закалке до твердости HRC³59; твердость сердцевины зуба и обода — HRC³35. С целью повышения усталостной прочности при изгибе шестерен исходный профиль впадин зубьев выполняют с выкружками (протуберанцами) и не шлифуют. Продольных скосов зубья шестерен не имеют, как на прежних жестких передачах, а влияние перекоса компенсируется самоустанавливающимся зубчатым венцом упругого колеса. После закалки и шлифовки профиль зуба и впадин шестерни подвергают магнитной дефектоскопии.
Посадка шестерни производится в нагретом до 443 К (170° С) состоянии на конический (конусность 1:10) хвостовик вала якоря тягового электродвигателя с осевым натягом 1,3 -1,45мм. Перед насадкой шестерни на вал сопрягаемые их посадочные поверхности проверяют на прилегание по краске (прилегание должно быть не менее 75 %). На валу электродвигателя шестерни от сползания с конуса в нагретом состоянии дополнительно крепят гайкой с моментом затяжки 500 Н • м (50 кгс • м) и контрятся отгибочной шайбой. Для съема шестерни гидрораспрессовкой на торце вала электродвигателя предусмотрено резьбовое отверстие с выходом на сопрягаемую посадочную поверхность под установку специального ручного гидронасоса.
   Зубчатое колесо  состоит из зубчатого венца 6, который через упругие элементы 1 и 2 посредством тарелок 19, призонных втулок 4, болтов 11 и гаек 3 соединен со ступицей 20, насаженной на ось колесной пары с натягом 0,16-0,22 мм, и жестко центрирован через ролики 10 по ее сферической поверхности. Момент затяжки болтов крепления тарелок 80 - 90 Н • м (8—9 кгс • м).  

Рис.20. Зубчатое колесо:
1,2 - упругие  элементы; 3 - гайка; 4 - призонные  втулки; 5,7,8,16,18 - втулки; 6 - зубчатый венец; 9 - кольцо; 10 - ролик; 11- болт; 12-отражательное   кольцо; 13- шайба; 14 - полукольцо; 15,22 -пальцы; 17,23,24- амортизаторы;   19- тарелка; 20-ступица; 21- пружинное кольцо;  Зубчатый венец изготавливают из стали 45ХН. Рабочая поверхность зубьев подвергается секторной закалке токами высокой частоты на глубину 3—5 мм и по .высоте 4—б мм от впадины зуба до твердости HRC³50, твердость сердцевины зуба и обода венца НВ255—НВ302. Впадины зубьев упрочняют накаткой роликами диаметром 120 мм с усилием 85—95 кН (8500—9500 кгс). После закалки и шлифовки профиль зуба и впадины венца подвергают магнитной дефектоскопии.
Упругие элементы для получения нелинейной характеристики тангенциальной жесткости зубчатого колеса выполнены разной жесткости двух типов. Восемь элементов 1 (малой жесткости) имеют жесткость (125—135)104 Н/м (125—135кгс/мм) и установлены в отверстия диаметром 70 мм тарелок и зубчатого венца по скользящей посадке. Они состоят из пальца 22, на наружную профильную поверхность которого насажены резиновые амортизаторы 24 и 23, предварительно вставленные в металлические втулки 5, 7 и 8. Втулки 5 и 7 выполнены с ограничительными буртами, препятствующими одностороннему свободному осевому перемещению по ним венца. Поэтому сформированные упругие элементы 1 устанавливают на колесе по четыре ограничительными буртами на каждой стороне зубчатого венца. Упругие элементы в тарелках и венце закрепляют стопорными пружинными кольцами 21.
Восемь других упругих элементов 2 имеют большую жесткость, равную (47—50) 106 Н/м (470—500 кгс/мм). Они установлены в отверстия тарелок по скользящей посадке, а в отверстие венца — с радиальным зазором 4 мм. Упругий элемент 2 также состоит из профильного пальца 15, на концы которого напрессованы резиновые амортизаторы 17, предварительно вставленные в металлические втулки 16 и 18. Для предотвращения сползания втулка 16 имеет ограничительный бурт и проточку, а втулка 18 — две проточки под установку стопорных пружинных колец 21. Необрезиненная поверхность пальца выполнена бочкообразной (радиусом 270 мм).
Все резиновые амортизаторы упругих элементов изготовляют из маслобензостойкой резины. Формирование упругих элементов производится способом запрессовки резиновых амортизаторов в металлическую арматуру, при этом посадочные поверхности предварительно смазывают смесью из 30 % касторового масла и 70 % этилового спирта. Сформированные упругие элементы для стабилизации сцепления резины с металлом выдерживают в течение 20 дней при температуре 288—303 К (15—30° С) без нагружения и доступа света.
При сборке упругого зубчатого колеса между венцом и ступицей устанавливают без сепаратора 90 роликов 10 размером 15х25 мм, которые обеспечивают относительное поворачивание венца и ступицы через тело качения, жесткую их центровку и разгрузку упругих элементов от радиальных усилий в зубчатом зацеплении тяговой передачи. Для возможности самоустановки зубчатого венца поверхность ступицы под роликами выполнена сферической радиусом 300 мм и упругие элементы сформированы с зазорами до 5 мм между ограничительными буртами втулок. Поверхности венца и ступицы под роликами термообработаны до твердости HRC³ 48. В целях предотвращения выпадания пальцев 15 и 22 с наружных сторон тарелок прикреплены ограничительные кольца 9. Тарелки, втулки и пальцы изготовлены из стали 45 или 38ХС и термообработаны с целью повышения износостойкости гнезд под упругие элементы.
Передача вращающего момента зубчатым колесом, имеющим упругие элементы разной жесткости двух типов, осуществляется как бы в два этапа: сначала при малом вращающем моменте в работу вступают упругие элементы 1 с меньшей жесткостью, а затем с увеличением вращающего момента (при трогании) венец поворачивается, и при угле поворота примерно Г вступают в работу более жесткие элементы 2. Таким образом обеспечивается требуемая нелинейная характеристика тангенциальной жесткости упругого зубчатого колеса.
Для осмотра состояния деталей упругого зубчатого колеса при ремонтах, а также замены упругих элементов предусмотрена возможность полной его разборки без расформирования колесной пары. Разборка производится в сторону противоположного колесного центра.
Применение в тяговом редукторе упругого зубчатого колеса позволило значительно (в 3 раза) снизить динамические нагрузки, возникающие в зацеплении при движении тепловоза, и, как показал опыт эксплуатации тепловозов, главное — достичь эксплуатационной долговечности зубчатой передачи не менее 1,2 млн. км пробега.
Для создания масляной ванны и предохранения зубчатых колес и шестерен от песка, пыли и других абразивных материалов тяговая зубчатая передача помещена в кожухе.
   Кожух тягового редуктора  состоит из двух разъемных сварной конструкции половин верхней 1 и нижней 12 с линией разъема по центрам шестерни и зубчатого колеса. Между верхней и нижней половинами кожуха для уплотнения разъема по всему периметру в паз, образованный приваренными изнутри и снаружи верхней половины кожуха накладками, укладывают уплотнительную резиновую трубку 6. Скрепляют две половины четырьмя болтами 7 через прокладки 8 толщиной, обеспечивающей установку уплотнительной трубки по разъему с преднатягом.  

Рис.21.  Кожух тягового редуктора:  
1 – верхняя часть кожуха; 2 – скобы; 3 – ребра жесткости; 4, 9, 11 – бонки; 5 – полукольцо отбойное; 6 – прокладки; 7 – болты; 8 – накладки уплотнительные; 10 – уплотнение; 12 – нижняя часть кожуха; 13 – горловина для заливки масла.
 
Кожух центрируют горловиной по бурту вкладыша осевого подшипника и жестко крепят к остову тягового электродвигателя в трех точках болтами М42 через две бонки 4 и 9, приваренные к несущей боковой стенке вблизи центра зубчатого колеса для восприятия основной массы кожуха, и бонку 11, приваренную на нижней половине к листу и обечайке для обеспечения правильной установки кожуха относительно зубчатого колеса. С помощью прокладок, устанавливаемых под бонки крепления, регулируют зазор между торцами зубчатого колеса и стенками кожуха (который должен быть не менее 8 мм), а также радиальный зазор между ступицей колесного центра и горловиной кожуха (который должен быть не менее 1,5 мм). Регулирование зазоров необходимо из-за износа осевого подшипника в процессе эксплуатации. Момент затяжки болтов должен быть 1400—1600 Н • м (140—160 кгс • м).
Кожух от внешней среды в месте соприкосновения горловины с буртом вкладыша осевого подшипника уплотняют войлочными полукольцами, уложенными в пазы горловины, а по отверстию монтажа ведущей шестерни установкой с преднатягом войлочного кольца между стенкой кожуха и подшипниковым щитом тягового электродвигателя. По оси уплотнение кожуха выполнено бесконтактным с дополнительным расширительным коробом, который имеет отражательное полукольцо 5 и в нижней части отверстие  для возврата проникшей смазки снова в полость кожуха. Герметичность сварных соединений кожуха проверяют керосином. Особое внимание уделяют уплотнению между кожухом и осевым подшипником, так как смазки разные и их смешивание резко снижает работоспособность рассматриваемых узлов и особенно польстерного устройства смазки осевого подшипника вследствие замасливания фитилей вязкой смазкой зубчатой передачи. Это уплотнение выполнено бесконтактным лабиринтно-кольцевым, образованным отбойным кольцом на ступице зубчатого колеса и желобом, который удерживается полукольцами  (по одному на каждой половине), приваренными внутри на несущей боковине кожуха. На пути уплотнения в нижней части полукольца  имеется отверстие, которое служит для отвода проникшей через уплотнение смазки за пределы кожуха.
Зубчатая передача тягового редуктора смазывается способом окунания, при котором зубчатое колесо захватывает смазку из нижней части кожуха и подает на рабочую часть зацепления с зубьями шестерни. В нижнюю половину кожуха заливается смазка СТП в количестве 5 кг. При этом зубья колеса погружаются в масло, не превышая окружности впадин, которое благодаря своим высоким показателям вязкости создает на поверхности зубьев непрерывный стабильный смазочный слой и в то же время стекает в нижнюю часть кожуха. Смазка СТП зубчатой передачи тягового редуктора, как показал опыт эксплуатации, обладает хорошей влагостойкостью и устойчивостью к окислению, имеет высокий показатель вязкости и удовлетворительные смазывающие качества при низких температурах 223 К (—50° С). Для предупреждения повышения давления газов в кожухе на его верхней половине установили сапун, соединяющий полость кожуха с атмосферой.
В эксплуатации контроль уровня смазки и ее дозаправку производят через горловину, закрытую резьбовой пробкой. Уровень смазки ограничивается нижним краем заправочной горловины.
Подвешивание тягового электродвигателя  на раму тележки выполнено упругим пружинным и так, чтобы можно было без труда опустить полностью колесно-моторный блок и выкатить его из-под тепловоза без выкатки тележки. Это подвешивание называют обычно траверсным. Траверсное подвешивание состоит из нижней 11 и верхней 4 балочек с приваренными к ним накладками 5 и 10 из стали 20Х, цементированных и закаленных до твердости HRC³50. Между накладками расположены четыре пружины 3, предварительно затянутые усилием около 40 — 50 кН (4—5 тс) с помощью стяжных болтов 2. Собранная траверса помещается между четырьмя опорными приливами кронштейна 6 поперечной балки рамы тележки. Через крайние пружины и опоры кронштейна тележки устанавливают направляющие стержни 9, предупреждающие выпадание всего траверсного подвешивания. Крайние пружины удерживают направляющие стержни, а средние — специальные трубчатые выступы 3, приваренные к балочкам. Направляющие стержни удерживаются от выпадания снизу валиками 7, закрепленными болтами к кронштейну рамы left000тележки.  
Рис.22. Подвешивание  тягового   электродвигателя:
 2-стяжной болт; 3-пружина; 4, 11-верхняя и нижняя балочки; 5, 10-накладки; 6-кронштейн рамы тележки; 8-трубчатый выступ; 9-направляющий стержень
Установка колесно-моторного блока на тележку производится при повернутом двигателе приблизительно на 30° к горизонтали путем спуска рамы тележки или подъема колесно-моторного блока для заведения опоры (носика) двигателя на траверсу, установленную на раме тележки. После установки тягового электродвигателя 1 отпускают стяжные болты, создавая зазор 5 мм между гайками и их опорными поверхностями. При этом траверсу устанавливают с преднатягом в кронштейне тележки и с незначительным зазором в опоре двигателя для обеспечения поперечных и продольных перемещений колесно-моторного блока, которые возникают при движении
тепловоза. Упругая пружинная траверсная подвеска тягового электродвигателя смягчает удары, передаваемые на раму тележки при колебаниях колесно-моторного блока во время движения. Пружины подвески рассчитывают так, чтобы при развитии наибольшей силы тяги между витками оставался зазор. Однако при движении тепловоза колесно-моторный блок совершает колебания, которые могут быть особенно интенсивными при боксовании вплоть до полной осадки пружин. Это вызывает отрыв от поверхности контакта и большие ударные нагрузки, которые передаются на узлы подвешивания тягового электродвигателя. Кроме того, опорная часть двигателя при движении перемещается по балочкам траверсы (особенно средней колесной пары тележки) как в продольном, так и в поперечном направлении. Все это вызывает интенсивный износ трущихся деталей: накладок траверсы и двигателя, кронштейнов тележки, которые после пробега 400 тыс. км подлежат периодической замене или восстановительному ремонту.

Приложенные файлы

  • docx 5314286
    Размер файла: 648 kB Загрузок: 0

Добавить комментарий