ответы по физике


1.Кинематика. Перемещение, скорость, ускорение.
Кинематика - раздел механики, который описывает движение тел, не занимаясь исследованием причин этого движения.
Основные характеристики: траектория движения, перемещение точки, пройденный путь, координаты, скорость, ускорение.
Траектория – линия по которой движется матер. точка в пространстве.
Перемещение - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Длина отрезка — это модуль перемещения, измеряется в метрах.
Можно определить перемещение, как изменение радиус-вектора точки: . Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.
Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:
.
Ско́рость - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта .Скорость мат. точки представляет собой вектор, характеризующий направление и быстроту перемещения мат. точки относительно тела отсчета.
Вектор ускорения характеризует быстроту и направление изменения скорости мат. точки отн-но тела отсчета.
Скорость движения определяется как производная координат по времени:

,
где  — единичные векторы, направленные вдоль соответствующих координат.
Ускоре́ние, производная скорости по времени — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).
Ускорение определяется как производная скорости по времени:
.
Ускорение бывает тангенциальным, центростремительным, угловым
2.Законы Ньютона
Зако́ны Ньюто́на — три эмпирических закона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы исходя из известных силовых взаимодействий на составляющие её тела.
I з-н Ньютона: сущствуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Инерция — это явление сохранения телом скорости движения , когда на тело не действуют никакие силы. Тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
II з-н Ньютона: В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
где  — ускорение материальной точки; — сила, приложенная к материальной точке; m — масса материальной точки.
В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.
где - импульс точки(где - скорость точки)t - время;  - производная импульса по времени.
Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

III з-н Ньютона: материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:
Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

3.Закон сохранения импульса
Зако́н сохране́ния и́мпульса утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная (в замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой)
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через F1 и F2 По третьему закону Ньютона F2 = - F1 Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: F2t = - F1t Применим к этим телам второй закон Ньютона:

где m1v1и m2v2 – импульсы тел в начальный момент времени, m1v1’ и m2v2’– импульсы тел в конце взаимодействия. Из этих соотношений следует:

 
Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.
4.Работа, кинетическая энергия
Работа(А) – физическая величина, равная произведению модулей силы и перемещения, умноженному на cos угла м/у векторами силы и перемещения : А = F S cos
Кинетическая энергия- энергия механической системы, зависящая от скоростей движения ее точек
Единица измерения в системе СИ — Джоуль.
Физический смысл кин.энергии: рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона: , где — есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы Учитывая, что , Получим:
Если система замкнута, то есть , то , а величина
остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.
Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:
где: - масса тела, - скорость центра масс тела,  - момент инерции тела,  — угловая скорость тела.
Физический смысл работы: работа всех сил, действующих на частицу, идёт на приращение кинетической энергии частицы:
5.Потенциальные силы, потенциальная энергия, закон сохранения энергии
Потенциальные силы(консерват. силы) - силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил, т е работа по любой замкнутой траектории которых равна 0). Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Для потенциальных сил выполняются следующие тождества:
— ротор потенциальных сил равен 0;
— работа потенциальных сил по произвольному замкнутому контуру равна 0;
— потенциальная сила является градиентом некой скалярной функции U, называемой силовой. Эта функция равна потенциальной энергии взятой с обратным знаком.
Потенциальная энергия  — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Изм-ся в Дж
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными. Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.
Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой: Ep = mgh, где Ep — потенциальная энергия тела, m — масса тела, g — ускорение свободного падения, h — высота положения центра масс тела над произвольно выбранным нулевым уровнем.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.
Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным. Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии.
Докажем закон сохранения энергии в следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал. Во время движения шарика происходит целый ряд превращений энергии. При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться.
6.Гравитационное поле, потенциальная энергия гравитационного поля
Гравитацио́нное по́ле - физическое поле, через которое осуществляется гравитационное взаимодействиеВ рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона, согласно которому сила гравитационного притяжения между двумя материальными точками с массами m1 и m2 пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:
Здесь G — гравитационная постоянная, приблизительно равная м³/(кг с²), R — расстояние между точками.

Потенциальная энергия частицы в гравитационном поле равна ее массе, умноженной на потенциал поля. Для потенциальной энергии любого распределения масс справедливо выражение:
где μ — плотность массы тела,  — гравитационный потенциал, V — объём тела.
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением.
Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.
Для двух тяготеющих точечных тел с массами M и m гравитационная энергия Ug равна:
,где: - гравитационная постоянная; - расстояние между центрами масс тел.
Этот результат получается из закона тяготения Ньютона, при условии, что для бесконечно удалённых тел гравитационная энергия равна 0. Выражение для гравитационной силы имеет вид где: Fg — сила гравитационного взаимодействия
С другой стороны согласно определению потенциальной энергии:
Тогда: ,
Константа в этом выражении может быть выбрана произвольно. Её обычно выбирают равной нулю, чтобы при r, стремящемуся к бесконечности, Ug стремилось к нулю.
Этот же результат верен для малого тела, находящегося вблизи поверхности большого. В этом случае R можно считать равным h + RM, где RM — радиус тела массой M, а h — расстояние от центра тяжести тела массой m до поверхности тела массой M.
На поверхности тела M имеем:
,
Если размеры тела M много больше размеров тела m, то формулу гравитационной энергии можно переписать в следующем виде:
,
где величину называют ускорением свободного падения. При этом член не зависит от высоты поднятия тела над поверхностью и может быть исключён из выражения путём выбора соответствующей константы. Таким образом для малого тела, находящегося на поверхности большого тела справедлива следующая формула
Ug = mgh
В частности, эта формула применяется для вычисления потенциальной энергии тел, находящихся вблизи поверхности Земли.
7.Центральный удар, абсолютно упругий и абсолютно неупругий удар
Уда́р - толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.
Абсолютно упругий удар - модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.
В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии
m1υ1 = m1u1 + m2u2.
Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:
Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения:
В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростью u2 = υ1, т. е. шары обмениваются скоростями (и, следовательно, импульсами).
Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1' = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе.
Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.
Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.
Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров .
После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей и после удара нужно знать положение линии центров в момент удара или прицельное расстояние d , т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости налетающего шара. Если массы шаров одинаковы, то векторы скоростей и шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m1 = m2 = m эти законы принимают вид:
Первое из этих равенств означает, что векторы скоростей , и образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами и равен 90°.
Абсолю́тно неупру́гий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.
Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массой M, подвешенный на веревках. Пуля массой m, летящая горизонтально со скоростью попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.
Обозначим скорость ящика с застрявшей в нем пулей через U Тогда по закону сохранения импульса
При застревании пули в песке произошла потеря механической энергии:
Отношение M / (M + m) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:
Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.
При m << M  почти вся кинетическая энергия пули переходит во внутреннюю энергию. При m = M  – во внутреннюю энергию переходит половина первоначальной кинетической энергии. Наконец, при неупругом соударении движущегося тела большой массы с неподвижным телом малой массы (m >> М) отношение
Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:
где h – максимальная высота подъема маятника. Из этих соотношений следует:
8.Вращательное движение, угловая скорость, угловое ускорение
Враща́тельное движе́ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.
Для описания вращательного движения тела вокруг неподвижной оси можно использовать только угловые параметры. угол поворота тела, рад; со — угловая скорость, определяет изменение угла поворота в единицу времени единицы измерения- рад/с.Изменение угловой скорости во времени определяется угловым ускорением. Частные случаи вращательного движения. Уравнение (закон) равномерного вращения в данном случае имеет вид: угол поворота до начала отсчета.
Уравнение (закон) равнопеременного вращения
начальная угловая скорость. Угловое ускорение при ускоренном движении — величина положительная; угловая скорость будет все время возрастать. Угловое ускорение при замедленном движении — величина отрицательная; угловая скорость убывает.
Углова́я ско́рость — векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:
, а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.
Единица измерения угловой скорости, принятая в системах - радианы в секунду. В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду.
Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью определяется формулой:
где  — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.
Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.
При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно:

Вектор углового ускорения α направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно  — при замедленном).
При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости ω по времени, то есть
, и направлен по касательной к годографу вектора в соответствующей его точке.
Существует связь между тангенциальным и угловым ускорениями:
aτ = αR,
где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/сек2 .
9.Момент инерции, момент сил, закон вращательного движения
Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Единица измерения СИ: кг·м².
При движении тела по окружности возникает также нормальное или центростремительное ускорение, модуль которого есть
Разобьем вращающееся тело на малые элементы Δmi. Расстояния до оси вращения обозначим через ri, модули линейных скоростей – через υi. Тогда кинетическую энергию вращающегося тела можно записать в виде:

Физическая величина зависит от распределения масс вращающегося тела относительно оси вращения. Она называется моментом инерции I тела относительно данной оси:
 
В пределе при Δm → 0 эта сумма переходит в интеграл. Единица измерения момента инерции в СИ – килограмм-метр в квадрате (кг∙м2). Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде
Момент силы — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
В системе СИ единицами измерения для момента силы является ньютон-метр. Символ момента силы M . Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси вращения рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метров от его оси вращения, это то же самое, что сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров до оси вращения. Более точно, момент силы частицы определяется как векторное произведение:

где  — сила, действующая на частицу, а  — радиус-вектор частицы.
10.Термодинамическое уравнение состояния идеального газа
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона — Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:
где  — давление, — молярный объём, — универсальная газовая постоянная,  — абсолютная температура,К
Так как , где  — количество вещества, а , где  — масса,  — молярная масса, уравнение состояния можно записать:
Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.
В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:
 — закон Бойля — Мариотта.
 — Закон Гей-Люссака.
 — закон Шарля (второй закон Гей-Люссака, 1808 г.)
11.Кинетическое уравнение состояния идеального газа, внутренняя энергия
Вну́тренняя эне́ргия тела (обозначается как E или U) — полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.
Изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.
Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:, где  — подведённая к телу теплота, измеренная в джоулях,  — работа, совершаемая телом против внешних сил, измеренная в джоулях
Эта формула является математическим выражением первого начала термодинамикиИдеальные газы: согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то
.
Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае CV(T,V) является функцией и температуры, и объёма.
Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:
ΔU = νCVΔT,
где ν — количество вещества, ΔT — изменение температуры.
12.Барометрическая формула Больцмана
Барометрическая формула- зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково).Если температура не зависит от высоты, то давление газа меняется с высотой по закону:, где — высота,  — молярная газовая постоянная,  — постоянная Больцмана, — ускорение свободного падения вблизи поверхности земли, — молярная масса газа, — масса одной молекулы,  — абсолютная температура.
Поделив барометрическую формулу на , с учетом уравнения состояния идеального газа, получим распределение Больцмана — зависимость концентрации молекул от потенциальной энергии:,где  — потенциальная энергия молекулы. В однородном поле силы тяжести .
13.Распределение Максвелла
Распределение Ма́ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому
Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:
,
где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и — постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы
Вывод распределения по Максвеллу: Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно, поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.
- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Но и равноправны, значит левая часть не зависит также и от . Значит, это константа.


Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул):
где Дж/К - постоянная Больцмана.

Все направления равноправны:
Чтобы найти среднее значение , проинтегрируем её вместе с функцией плотности вероятности от минус до плюс бесконечности:

Отсюда найдём :
Функция распределения плотности вероятности для (для и аналогично):
Рассмотрим теперь распределение по величине скорости. Вернемся в пространство скоростных точек. Все точки с модулем скорости лежат в шаровом слое радиуса и толщины , и - объем этого шарового слоя.


Так, мы получили - функцию плотности вероятности, которая и называется распределением Максвелла.
14.Броуновское движение
Бро́уновское движе́ние — в естествознании, беспорядочное движение микроскопических, видимых, взвешенных в жидкости (или газе) частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости (или газа).
Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют ,более мелкие частицы (менее 3мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.
Основной физический принцип лежащий в основе броуновского движения состоит в том, что средняя кинетическая энергия движения молекул жидкости  (или газа) равна средней кинетической энергии любой частицы, подвешенной в этой среде. Поэтому средняя кинетическая энергия < E > поступательного движения броуновской частицы равна:
< E > = m<v2>/ 2 = 3kT/2,
где m - масса броуновской частицы, v - её скорость, k - постоянная Больцмана, T - температура. Мы можем видеть из этой формулы, что средняя кинетическая энергия броуновской частицы, а значит и интенсивность её движения растёт с увеличением температуры.
Броуновская частица будет двигаться по зигзагообразному пути, удаляясь постепенно от начальной точки. Вычисления показывают, что значение среднего квадрата смещения броуновской частицы  r 2 = x 2 + y 2 + z 2 описывается формулой:
< r 2 > = 6kTBt
где B - подвижность частицы, которая обратно пропорциональна вязкости среды и размеру частицы. Эта формула, называемая формулой Эйнштейна, была со всей возможной тщательностью подтверждена экспериментально французским физиком Жаном Перреном (1870-1942). На основе измерения параметров движения броуновской частицы Перрен получил значения постоянной Больцмана и число Авогадро, хорошо согласующиеся в пределах ошибок измерений со значениям, полученными другими методами.
15.Первое начало термодинамики. Работа, теплота ,внутренняя энергия.
Формулировка: количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.
Первый закон (первое начало) термодинамики можно сформулировать так: «Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщенного системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале , и работы A', совершённой над системой внешними силами и полями, за вычетом работы А, совершённой самой системой против внешних сил» : .
Для элементарного количества теплоты , элементарной работы и малого приращения (полного дифференциала) внутренней энергии первый закон термодинамики имеет вид:
.
Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая – работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.
Вну́тренняя эне́ргия тела - полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.
Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:, где  — подведённая к телу теплота, измеренная в джоулях,  — работа, совершаемая телом против внешних сил, измеренная в джоулях
Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:
Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V).
Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). Например, если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A'. В то же время силы давления, действующие со стороны газа на поршень, совершают работу A = –A'. Если объем газа изменился на малую величину ΔV, то газ совершает работу pSΔx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение (рис. 3.8.1). При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:
или в пределе при ΔVi → 0:

Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 3.8.2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный. Процессы такого рода, которые можно проводить в обоих направлениях, называются обратимыми В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь. Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия. Другим примером может служить опыт Джоуля (1843 г.) по определению механического эквивалента теплоты При вращении вертушки, погруженной в жидкость, внешние силы совершают положительную работу (A' > 0); при этом жидкость из-за наличия сил внутреннего трения нагревается, т. е. увеличивается ее внутренняя энергия. В этих двух примерах процессы не могут быть проведены в противоположном направлении. Такие процессы называются необратимыми.
16.Изобарический и изохорические процессы, теплоемкость в таких процессах
Изобарный процесс -  термодинамический процесс, происходящий в системе при постоянном давлении и массе идеального газа. Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе .
Работа, совершаемая газом при расширении или сжатии газа, равна A = PΔV.
Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии: δQ = ΔI = ΔU + PΔV.
График изобарического расширения газа от объёма Va до Vb. AB здесь является изобарой.
Молярная теплоёмкость при постоянном давлении обозначается как Cp. В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера Cp = Cv + R.
Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной: для одноатомных газов , то есть около 20.8 Дж/(моль·К); для двухатомных газов , то есть около 29.1 Дж/(моль·К); для многоатомных газов Cp = 4R, то есть около 33.3 Дж/(моль·К).
Изохорический или изохорный процесс -это термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

Теплоемкость

17.Изотермический и адиабатический процессы: реализация, работа и уравнения
Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.
Для осуществления изотермического процесса систему обычно помещают в термостат, теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса, и, температура системы в любой момент практически не отличается от температуры термостата. Графиком изотермического процесса является изотерма.
В идеальном газе при изотермическом процессе произведение давления на объём постоянно (закон Бойля-Мариотта). Изотермы идеального газа в координатах p,V — гиперболы, расположенные на графике тем выше, чем выше температура, при которой происходит процесс .
При изотермическом процессе системе, вообще говоря, сообщается определённое количество теплоты (или она отдаёт теплоту) и совершается внешняя работа. Альтернативный процесс, при котором теплообмен с окружающей средой отсутствует (термодинамическая система находится в энергетическом равновесии — система не поглощает и не выделяет тепло), называется адиабатическим процессом.
Работа, совершенная идеальным газом в изотермическом процессе, равна , где  — число частиц газа,  — температура, и  — объём газа в начале и конце процесса,  — постоянная Больцмана .
В твёрдом теле и большинстве жидкостей изотермические процессы очень мало изменяют объём тела, если только не происходит фазовый переход.
Первый закон термодинамики для изотермического процесса в идеальном газе записывается в виде:    
Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии. В общем случае адиабатический процесс необратим.
Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой.

Для адиабатического процесса первое начало термодинамики в силу отсутствия теплообмена (ΔQ = 0) системы со средой имеет вид , где:— изменение внутренней энергии тела, — работа, совершаемая системой, — теплота, полученная системой
Основное уравнение термодинамики применительно к адиабатическому процессу записывается в дифференциалах как ,
где — дифференциальное выражение для работы, ai — внешние параметры, Ai — соответствующие им внутренние параметры. В частном случае, когда работа совершается через изменение объёма, , где p — давление.
Для идеальных газов адиабата имеет простейший вид и определяется уравнением:, где:— давление газа,— его объём, — показатель адиабаты, и — теплоёмкости газа соответственно при постоянном давлении и постоянном объёме.
Показатель адиабаты: Для нерелятивистского невырожденного одноатомного идеального газа , для двухатомного , для трёхатомного , для газов состоящих из более сложных молекул, показатель адиабаты, определяется числом степеней свободы конкретной молекулы.
При адиабатическом процессе показатель адиабаты равен , где R — универсальная газовая постоянная.
С учётом уравнения состояния идеального газа уравнение адиабаты может быть преобразовано к виду:
, где T — абсолютная температура газа.
Или к виду:

Поскольку всегда больше 1, из последнего уравнения следует, что при адиабатическом сжатии (т.е. при уменьшении V) газ нагревается (T возрастает), а при расширении — охлаждается, что всегда верно и для реальных газов.
18.Второе начало термодинамики, формулировки Томпсона и Клаузиуса
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.
Существуют несколько эквивалентных формулировок второго начала термодинамики:
Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» (такой процесс называется процессом Клаузиуса).
Постулат Томсона: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).
Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло Q1 у нагревателя, отдав Q2 холодильнику и совершив при этом работу A = Q1 − Q2. После этого воспользуемся процессом Клаузиуса и вернем тепло Q2 от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.
С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.
Таким образом, постулаты Клаузиуса и Томсона эквивалентны.
Другая формулировка второго начала термодинамики основывается на понятии энтропии:
«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).
Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.
В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.
19.Цикл Карно
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.
Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.
Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.
Описание цикла Карно:

Цикл Карно в координатах P и V Цикл Карно в координатах T и S
Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.
Цикл Карно состоит из четырёх стадий:
Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.
Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.
Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия (поскольку при δQ = 0). Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).
20.Энтропия: определение, закон возрастания энтропии
Энтропия — это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, что коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.
Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.
,
где dS — приращение энтропии; δQ — минимальная теплота подведенная к системе; T — абсолютная температура процесса;
   Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 3.13.

Рис. 3.13.Необратимый круговой термодинамический процесс
     Пусть процесс будет необратимым, а процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид:
       Так как процесс является обратимым, для него можно воспользоваться соотношением (3.53), которое дает :
     Подстановка этой формулы в неравенство (3.55) позволяет получить выражение :
 Сравнение выражений позволяет записать следующее неравенство :    ,  в котором знак равенства имеет место в случае, если процесс является обратимым, а знак больше, если процесс - необратимый.
     Если рассмотреть адиабатически изолированную термодинамическую систему, для которой , то выражение примет вид   или в интегральной форме
     Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом: «В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс»
     Записанное утверждение является ещё одной формулировкой второго начала термодинамики.
     Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.
21.Процессы переноса, законы Фика и Фурье
В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выбирать так, чтобы ось х была направлена в сторону в направления переноса. 1. Теплопроводность. Если в первой области газа средняя кинетическая энергия молекул больше, чем во второй, то вследствие постоянных столкновений молекул с течением времени происходит процесс выравнивания средних кинетических энергий молекул, т. е., выравнивание температур. Перенос энергии в форме теплоты подчиняется закону Фурье: (1) ,где jE — плотность теплового потока — величина, которая определяется энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, λ — теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что во время теплопроводности энергия перемещается в направлении убывания температуры (поэтому знаки jE и – противоположны). Теплопроводность λ равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что (2) , где сV — удельная теплоемкость газа при постоянном объеме (количество теплоты, которое необходимо для нагревания 1 кг газа на 1 К при постоянном объеме), ρ — плотность газа, <ν> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега. 2. Диффузия. При диффузии происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия есть обмен масс частиц этих тел, при этом явление возникает и продолжается, пока существует градиент плотности. Во времена становления молекулярно-кинетической теории по вопросу явления диффузии возникли противоречия. Поскольку молекулы перемещаются в пространстве с огромными скоростями, то диффузия должна происходить очень быстро. Если же открыть в комнате крышку сосуда с пахучим веществом, то запах распространяется довольно медленно. Но здесь нет противоречия. При атмосферном давлении молекулы обладают малой длиной свободного пробега и, при столкновениях с другими молекулами, преимущественно «стоят» на месте. Явление диффузии для химически однородного газа подчиняется закону Фика: (3) ,где jm — плотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D — диффузия (коэффициент диффузии), dρ/dx — градиент плотности, который равен скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dρ/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов, (4) 3. Внутреннее трение (вязкость). Суть механизма закл-ся в возникновения внутреннего трения между параллельными слоями газа (жидкости), которые двигаются с различными скоростями, есть в том, что из-за хаотического теплового движения осуществляется обмен молекулами между слоями, в результате чего импульс слоя, который движется быстрее, уменьшается, который движется медленнее — увеличивается, что приводит к торможению слоя, который движется быстрее, и ускорению слоя, который движется медленнее. Как известно, сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона: (5) , где η — динамическая вязкость (вязкость), dν/dx — градиент скорости, который показывает быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S — площадь, на которую действует сила F. Согласно второму закону Ньютона взаимодействие двух слоев можно рассматривать как процесс, при котором в единицу времени от одного слоя к другому передается импульс, который по модулю равен действующей силе. Тогда выражение (5) можно записать в виде: (6) ,где jp — плотность потока импульса — величина, которая определяется определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, dν/dx — градиент скорости. Знак минус говорит о том, что импульс переносится в направлении убывания скорости (поэтому знаки jp и dν/dx противоположны). Динамическая вязкость η численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле (7) Из сопоставления формул (1), (3) и (6), которые описывают явления переноса, следует, что закономерности всех явлений переноса сходны между собой.
Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетической сути коэффициентов λ, D и η. Выражения для коэффициентов переноса получаются из кинетической теории. Они записаны без вывода, поскольку строгое и формальное рассмотрение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (2), (4) и (7) дают связь коэффициентов переноса и характеристики теплового движения молекул. Из этих формул следуют простые зависимости между λ, D и η: и
22.Закон Кулона, напряженность электрического поля, закон суперпозиции
В природе существуют только два вида зарядов – положительные и отрицательные. Заряды одного знака отталкиваются, заряды разных знаков (разноимённые заряды) притягиваются. Элементарный отрицательный заряд равен по величине элементарному положительному заряду. В системе СИ заряд измеряется в кулонах (Кл). Величина элементарного заряда e =1,6∙Кл.
В 1785 г. Шарль Кулон (1736-1806) экспериментально установил закон взаимодействия двух точечных зарядов, т.е. таких заряженных тел, размерами которых в данной задаче можно пренебречь. Этот закон гласит: сила взаимодействия двух точечных зарядов прямо пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по линии, соединяющей эти заряды. Для вакуума этот закон имеет вид :      ,     (1.2), где Кл²/Н·м² (Ф/м) – электрическая постоянная. В диэлектрике сила взаимодействия двух точечных зарядов:  (1.3), где  - диэлектрическая проницаемость диэлектрика. Она показывает во сколько раз сила кулоновского взаимодействия в диэлектрике меньше, чем в вакууме. Взаимодействие между зарядами на расстоянии осуществляется через электрическое поле.
Электрическое поле – это одна из форм материи. Оно обладает свойством действовать на внесённые в него заряды с некоторой силой. Электрическое поле является составной частью электромагнитного поля. Поле, окружающее неподвижные заряды, называется электростатическим.
Представление об электрическом поле было введено в науку в 30-х годах ХIХ века Майклом Фарадеем (1791-1867). Согласно Фарадею, каждый электрический заряд окружён созданным им электрическим полем. Будем помещать в точку М поля    заряда q  различные пробные заряды (рис. 1.2).

                                                     Рис.1.2
На каждый из них электрическое поле действует с различными силами.
Но если величину каждой силы разделить на соответствующее ей значение пробного заряда, то получим одно и то же значение, характерное для точки М этого поля. То есть эта величина может служить силовой характеристикой электрического поля в точке М. Она называется напряжённостью электрического поля: E = F/qпр.  (1.4)
Напряжённость электрического поля – векторная величина. Напряжённость не зависит от наличия или отсутствия в данном поле пробных зарядов. Она зависит от свойств самого поля, которое определяется зарядом – источником, расстоянием от него до точки поля, в которой измеряется напряжённость, и средой, в которой создано поле. В системе СИ напряжённость электрического поля измеряется в вольтах на метр (В/м).
Пусть имеется положительный точечный заряд – источник поля Q. Поместим в некоторую точку поля M этого заряда положительный пробный заряд qпр. На этот заряд будет действовать сила: .    (1.5)
Тогда напряжённость поля, создаваемого точечным зарядом Q в точке M, (1.6)
Если заряд Q окружает среда с диэлектрической проницаемостью ε, то напряжённость создаваемого им поля : (1.7)
Электрическое поле, напряжённость которого в каждой точке одинакова по величине и направлению, называется однородным. Силовыми линиями однородного поля являются параллельные прямые, расположенные на одинаковом расстоянии друг от друга. Электрическое поле точечного заряда неоднородно.
Если на электрический заряд q одновременно действуют электрические поля нескольких зарядов, то результирующая сила  равна геометрической сумме сил, действующих со стороны каждого поля в отдельности. Это называется принципом суперпозиции: если в данной точке пространства различные заряды создают электрические поля с напряжённостями Е1, Е2 и т.д., то вектор напряжённости электрического поля в этой точке равен сумме векторов напряжённости всех электрических полей : Е = Е1 + Е2 + ...+Еn (1.8)
23.Опыт Милликена, заряд электрона.
Первое прецизионное измерение электрического заряда электрона — заслуга Роберта Милликена. Его экспериментальная установка представляла собой большой и емкий плоский конденсатор из двух металлических пластин с камерой между ними. На обкладки конденсатора Милликен подавал постоянное напряжение от мощной батареи, создавая на них высокую разность потенциалов, а между обкладками помещал мелко распыленные капли — сначала воды, а затем масла, которое, как выяснилось, ведет себя в электростатическом поле значительно устойчивее, а главное — испаряется гораздо медленнее. Сначала Милликен измерил предельную скорость падения капель — то есть скорость, при которой сила земного притяжения, действующая на капли, уравновешивается силой сопротивления воздуха. По этой скорости ученый определил объем и массу капель аэрозольной взвеси. После этого он распылил идентичный аэрозоль в присутствии электростатического поля, то есть при подключенной батарее. В этом случае масляные капли оставались в подвешенном состоянии достаточно долго, поскольку силы гравитационного притяжения Земли уравновешивались силами электростатического отталкивания между каплями аэрозоля.Причина, по которой капли масляного аэрозоля электризуются, банальна: это простой электростатический заряд, подобный тому, который накапливается, скажем, на белье, которое мы достаем из сушильной центрифуги, в результате того что ткань трется о ткань — он возникает в результате трения капель о воздух, заполняющий камеру. Накопив достаточно экспериментальных данных для статистической обработки, Милликен вычислил величину единичного заряда и опубликовал полученные результаты, которые содержали максимально точно для тех лет рассчитанный заряд электрона.
В природе существуют только два вида зарядов – положительные и отрицательные. Заряды одного отталкиваются, заряды разных знаков притягиваются. Наименьшим (элементарным) зарядом обладают элементарные частицы. Элементарный отрицательный заряд равен по величине элементарному положительному заряду. В системе СИ заряд измеряется в кулонах (Кл). Величина элементарного заряда e =1,6∙Кл.
В природе нигде и никогда не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда  +q всегда сопровождается появлением равного по абсолютной величине отрицательного электрического заряда -q. Ни положительный, ни отрицательный заряды не могут исчезнуть по отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если равны по абсолютной величине. Этот экспериментально установленный факт называется законом сохранения электрического заряда, который формулируется следующим образом: в электрически изолированной системе алгебраическая сумма зарядов остаётся постоянной:
const.        (1.1)
Изолированной называется система, не обменивающаяся зарядами с внешней средой.
24.Поле электрического диполя
Дипо́ль — идеализированная система, служащая для приближённого описания распространения поля.
Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся на расстоянии друг от друга, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Силовые линии электрического диполя
Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.
Другими словами, электрический диполь представляет из себя совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга
Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов называется дипольным моментом:
Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.
Потенциальная энергия электрического диполя в электрическом поле равна
Вдали от электрического диполя напряжённость его электрического поля убывает с расстоянием как R − 3, то есть быстрее, чем у точечного заряда (E˜R − 2).
Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении может рассматриваться как электрический диполь с моментом где  — заряд i-го элемента,  — его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.
25.Теорема Гаусса, примеры ее применения
Теорема Гаусса — основная теорема электродинамики, которая применяется для вычисления электрических полей, входит в систему уравнений Максвелла. Она выражает связь между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью.
Применение теоремы Гаусса: Для вычисления электромагнитных полей используются следующие величины: объёмная плотность заряда; поверхностная плотность заряда: (где dS — бесконечно малый участок поверхности); линейная плотность заряда: (где dl — длина бесконечно малого отрезка.)
-Расчёт напряжённости бесконечной плоскости
Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии E' = E'' = E. Поток вектора напряжённости равен 2EΔS. Применив теорему Гаусса, получим: из которого
-Расчёт напряжённости бесконечной нити
Рассмотрим поле, создаваемое бесконечной нитью с линейной плотностью заряда, равной λ. Пусть требуется определить напряжённость, создаваемую этим полем на расстоянии R от нити. Возьмём в качестве гауссовой поверхности цилиндр с осью, совпадающей с нитью, радиусом R и высотой Δl. Тогда поток напряжённости через эту поверхность рассчитывается следующим образом:
В силу симметрии, модуль напряжённости в любой точке поверхности цилиндра будет одинаков. Тогда поток напряжённости через эту поверхность рассчитывается следующим образом:

Учитывается только площадь боковой поверхности цилиндра, так как поток через основания цилиндра равен нулю. Приравнивая 1 и 2 выражения, получим:

26.Потенциал электрического поля
Электростатический потенциа́л — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля.
Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:
Напряжённость электростатического поля E и потенциал связаны соотношением:Здесь  — оператор набла, то есть в правой части равенства стоит вектор с компонентами, равными частным производным от потенциала по соответствующим координатам, взятый с противоположным знаком
Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона. В единицах системы СИ:, где  — электростатический потенциал (в вольтах),  — объёмная плотность заряда (в кулонах на кубический метр), а  — диэлектрическая проницаемость вакуума (в фарадах на метр).
Поскольку потенциал может быть определён с точностью до произвольной постоянной, то непосредственный физический смысл имеет не сам потенциал, а разность потенциалов, которая определяется как: где:  — потенциал в точке 1,  — потенциал в точке 2,  — работа поля по переносу пробного заряда q * из точки 1 в точку 2. При этом считается, что все остальные заряды при такой операции «заморожены».
В СИ за единицу разности потенциалов принимают вольт (В). Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1В = 1 Дж/Кл (L²MT−3I−1). В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг. Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ
27.Проводники и диэлектрики во внешнем поле
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле Е складывается в соответствии с принципом суперпозиции из внешнего поля Е0 и внутреннего поля Е`создаваемого заряженными частицами вещества.
Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки.

Индукционные заряды создают свое собственное поле Е` которое компенсирует внешнее поле Е0 во всем объеме проводника: (внутри проводника).
Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.
В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле Е0 в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.
Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика. В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля
Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.
 
28.Диэлектрики, диэлектрическая проницаемость, восприимчивость и вектор поляризации
Диэлектрик - вещество, плохо проводящее или совсем не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле
Диэлектрическую проницаемость проще определить через заряд плоского конденсатора. Если взять плоский конденсатор в вакууме, то заряд на каждой его пластине равен (по модулю):       (1.4), где 0 - диэлектрическая постоянная, или диэлектрическая проницаемость вакуума, 0 = 8.85 · 10-12 Ф/м,  S- площадь каждой из пластин, d - зазор между пластинами,  U - напряжение между ними. Разделив на площадь и перейдя к плотности заряда на обкладке , получим   =  0·E.
Отношение Qm/Q0 =  называется диэлектрической проницаемостью материала. Из самого определения видно, что диэлектрическая проницаемость материала является безразмерной величиной.
Суммарный дипольный момент единицы объема называется поляризацией . Вектор поляризации направлен вдоль направления электрического поля. Его значение связано с напряженностью поля P=0··E, где   - диэлектрическая восприимчивость. Диэлектрическая проницаемость связана с восприимчивостью  =1+. Дипольный момент молекулы является вектором поляризации, направленным от отрицательного заряда к положительному. Численно он равен произведению расстояния между зарядами на модуль заряда.
Именно поляризация и вызывает увеличение заряда на обкладках конденсатора при подключенном источнике. Значение плотности заряда на обкладках конденсатора  =P+0E. Естественно, что в случае вакуума поляризация равна нулю, диэлектрическая проницаемость в точности равна единице.
Для устройств с электрическим полем важно понимать, как изменяется электрическое поле при использовании комбинации двух диэлектриков с разной диэлектрической проницаемостью. Если расположить диэлектрики так, что электрическое поле перпендикулярно поверхности раздела, то значения напряжённости поля в каждом материале обратно пропорциональны диэлектрическим проницаемостям:      (1.7.)
В случае, когда электрическое поле параллельно поверхности раздела, напряженности поля в материалах одинаковы. Этот случай можно реализовать, вводя в конденсатор диэлектрик, толщины, равной зазору в конденсаторе. Емкость, при этом, увеличивается существенно, пропорционально объемной доле диэлектрика.
Для понимания процессов в диэлектриках важно знать типичные распределения и значения полей. Наиболее часто используются модельные представления электродных систем, к которым с той или иной степенью приближения можно свести многие реальные электродные системы. Это три типа полей: плоско- параллельное; радиально-цилиндрическое, или аксиальное; радиально-сферическое. Ниже приводятся описание этих полей и необходимые для расчета формулы.
29.Электрическое поле на границе диэлектриков
Рассмотрим поведение векторов E и D на границе раздела двух однородных изотропных диэлектриков с проницаемостями и при отсутствии на границе свободных зарядов.Граничные условия для нормальных составляющих векторов D и E следуют из теоремы Гаусса. Выделим вблизи границы раздела замкнутую поверхность в виде цилиндра, образующая которого перпендикулярна к границе раздела, а основания находятся на равном расстоянии от границы (рис. 2.6).

Так как на границе раздела диэлектриков нет свободных зарядов, то, в соответствии с теоремой Гаусса, поток вектора электрической индукции через данную поверхность: .
Выделяя потоки через основания и боковую поверхность цилиндра, где - значение касательной составляющей усредненное по боковой поверхности . Переходя к пределу при (при этом также стремится к нулю), получаем , или окончательно для нормальных составляющих вектора электрической индукции: .
Для нормальных составляющих вектора напряженности поля получим: .
Таким образом, при переходе через границу раздела диэлектрических сред нормальная составляющая вектора терпит разрыв, а нормальная составляющая вектора непрерывна.Граничные условия для касательных составляющих векторов D и E следуют из соотношения, описывающего циркуляцию вектора напряженности электрического поля. Построим вблизи границы раздела прямоугольный замкнутый контур длины l и высоты h (рис. 2.7).
Учитывая, что для электростатического поля
,
и обходя контур по часовой стрелке, представим циркуляцию вектора E в следующем виде:
,
где - среднее значение En на боковых сторонах прямоугольника. Переходя к пределу при , получим для касательных составляющих E
.
Для касательных составляющих вектора электрической индукции граничное условие имеет вид:
Таким образом, при переходе через границу раздела диэлектрических сред касательная составляющая вектора непрерывна, а касательная составляющая вектора терпит разрыв.Преломление линий электрического поля. Из граничных условий для соответствующих составляющих векторов E и D следует, что при переходе через границу раздела двух диэлектрических сред линии этих векторов преломляются (рис. 2.8). Разложим векторы E1 и E2 у границы раздела на нормальные и тангенциальные составляющие и определим связь между углами и при условии . Легко видеть, что как для напряженности поля, так и для индукции справедлив один и тот же закон преломления линий напряженности и линий смещения
.
При переходе в среду с меньшим значением угол, образуемый линиями напряженности (смещения) с нормалью, уменьшается, следовательно, линии располагаются реже. При переходе в среду с большей линии векторов E и D, напротив, сгущаются и удаляются от нормали.
30.Электрическая ёмкость проводника, конденсатор
Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.В системе СИ ёмкость измеряется в фарадах.
Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид: где Q — заряд, U — потенциал проводника.
Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ):
Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.
При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью С, собственной индуктивностью Lc и сопротивлением потерь Rn.
Резонансная частота конденсатора равна
При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.
Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора: , где  — напряжение (разность потенциалов), до которого заряжен конденсатор.
31.Энергия электрического поля
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает
Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно,
Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна :
C учетом соотношения можно записать :
В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим
Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поля Е. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, .Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим
Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика.
Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:


Приложенные файлы

  • docx 770875
    Размер файла: 592 kB Загрузок: 0

Добавить комментарий