Л 2.8. Побочные ЭМИ и наводки.Часть1


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:

Костин Н. А.      Побочные электромагнитные излучения и наводкиЧасть 1 Лекция 2.8    Москва, 20111 Содержание лекции: 1.Побочные преобразования акустических сигналов в электрические сигналы 2. Паразитные связи и наводки3. Низкочастотные и высокочастотные излучения технических средств    Литература:Торокин А. А. Инженерно-техническая защита информации. — М.: Гелиос АРВ, 2005.2 3ВведениеВ радиоэлектронных каналах утечки информации источники сигналов могут быть:передающие устройства функциональных каналов связи;источники побочных электромагнитных излучений и наводок (ПЭМИН);объекты, отражающие электромагнитные волны в радиодиапазоне; объекты, излучающие собственные (тепловые) электромагнитные волны в радиодиапазоне. Физическую основу случайных опасных сигналов, возникающих во время работы в выделенном помещении радиосредств и электрических приборов, составляют побочные электромагнитные излучения и наводки (ПЭМИН). Процессы и явления, образующие ПЭМИН, по способам возникновения можно разделить на 4 вида:-не предусмотренные функциями радиосредств и электрических приборов преобразования внешних акустических сигналов в электрические сигналы;-паразитные связи и наводки;-побочные низкочастотные излучения;-побочные высокочастотные излучения.4 1. Побочные преобразования акустических сигналов в электрические сигналы5 Преобразователи внешних акустических сигналов в электрические сигналы называются акустоэлектрическими преобразователями. К акустоэлектрическим преобразователям относятся физические устройства, элементы, детали и материалы, способные под действием переменного давления акустической волны создавать эквивалентные электрические сигналы или изменять свои параметры6 Рис.1. Классификация акустоэлектрических преобразователейЭлектродинамические индуктивныеЭлектромагнитные магнитострикционныепьезоэлектрические емкостные7 На выходе активных акустоэлектрических преобразователей под действием акустической волны возникают электрические сигналы. У пассивных акустоэлектрических преобразователей те же действия акустической волны вызывают лишь изменения параметров преобразователей. По способам формирования электрического сигнала активные акустоэлектрические преобразователи могут быть электродинамическими, электромагнитными и пьезоэлектрическими.8 силовые линии ВПроводРис. 2. Принципы работы электродинамического акустоэлектрического преобразователяМагнитные9Опасные сигналы в электродинамических акустоэлектрических преобразователях возникают в соответствии с законом электромагнитной индукции при перемещении провода в магнитном поле под действием акустической волны (рис. 5.2). Если провод длиной L под действием акустической волны со звуковым давлением Р перемещается со скоростью V в магнитном поле с индукцией В, то в нем при условии перпендикулярности силовых магнитных линий проводу и скорости его перемещения, возникает ЭДС величиной е = LBV. Так как V = PS/Zmc (Р — звуковое давление, S — площадь провода, на которую оказывает давление акустическая волна, Zmc — величина механического сопротивления движению провода), то е = LBSP / Zmc.Наибольшей чувствительностью обладают электродинамичекие акустоэлектрические преобразователи в виде динамических головок громкоговорителей (см. рис. 5.3).10 11 Сущность преобразования состоит в следующем. Под давлением акустической волны соединенная с диффузором катушка в виде картонного цилиндра с намотанной на нем тонкой проволокой перемещается в магнитном поле, создаваемом постоянным магнитом цилиндрической формы. В соответствии с законом электромагнитной индукции в проводах катушки возникает электродвижущая сила (ЭДС), величина которой пропорциональна громкости звука.12 Аналогичный эффект возникает в электромагнитных акустоэлектрических преобразователях. К ним относятся электромагниты электромеханических звонков и капсюлей телефонных аппаратов, шаговые двигатели вторичных часов, кнопочные извещатели ручного вызова пожарной службы охраняемого объекта и др. Электрические сигналы индуцируются в катушках электромагнитов этих устройств в результате изменений напряженности создаваемых ими полей, вызванных изменениями под действием акустической волны воздушного зазора между сердечником и якорем электромагнита или статора (неподвижной части) и ротора (подвижной) части электродвигателя. 13 14 Перечень бытовых радио- и электроприборов, в которых возникают подобные процессы и которые устанавливаются в служебных и жилых помещениях, достаточно велик. К ним относятся: телефонные аппараты с электромеханическими звонками, вторичные электрические часы системы единого времени предприятия или организации, вентиляторы и др. Уровни опасных сигналов в этих цепях зависят от конструкции конкретного типа средства и их значения имеют значительный разброс. Например, опасные сигналы, создаваемые звонковой цепью телефонного аппарата, могут достигать значений долей и единиц мВ.15 Пьезоэлектрические акустоэлектрические преобразователи Активными акустоэлектрическими преобразователями являются также некоторые кристаллические вещества (кварц, сегнетовая соль, титанат и ниобат бария и др.), которые широко применяются в радиоаппаратуре для стабилизации частоты и фильтрации сигналов, в качестве акустических излучателей сигналов вызова в современных телефонных аппаратах вместо электромеханических звонков. На поверхности этих веществ при механической деформации их кристаллической решетки (давлении на поверхность, изгибе, кручении) возникают электрические заряды.16 В пассивных акустоэлектрических преобразователях акустическая волна изменяет параметры элементов схем средств, в результате чего изменяются параметры циркулирующих в этих схемах электрических сигналов. В большинстве случаях под действием акустической волны изменяются параметры индуктивностей и емкостей электрических цепей. В соответствии с этим акустоэлектрические преобразователи называются индуктивными и емкостными.17 Если схема электрической цепи содержит катушку с витками проволоки, то под действием акустической волны изменяются расстояние между витками и геометрические размеры самой катушки. В результате этого, как следует из соответствующих формул, изменяется индуктивность катушки. Если, например, катушка является элементом частотно задающего контура генератора, то изменение индуктивности вызывает частотную модуляцию сигнала генератора. В итоге информация, записанная в параметры акустической волны, переписывается в параметры электрического сигнала, способного перенести ее к злоумышленнику на большое расстояние. Аналогичная картина наблюдается при изменении под действием акустической волны емкости контура генератора. Если акустоэлектрический преобразователь представляет собой реактивное сопротивление, величина которого меняется в соответствии с параметрами акустического сигнала, то изменение этого сопротивления вызывает амплитудную модуляцию тока в цепи.18 Разновидностью индуктивного является магнитострикционный акустоэлектрический преобразователь. Магнитострикция проявляется в изменении магнитных свойств ферромагнитных веществ (электротехнической стали и ее сплавов) при их деформировании (растяжении, сжатии, изгибании, кручении). Такое явление называется Виллари-эффектом или обратной магнитострикцией, открытым итальянским физиком Э. Виллари в 1865 г. Этот эффект обусловлен изменением под действием механических напряжений доменной структуры ферромагнетика. Прямая магнитострикция заключается в изменении геометрических размеров и объема ферромагнитного тела при помещении его в магнитное поле. В результате обратной магнитострикции под действием акустической волны изменяется магнитная проницаемость сердечников контуров, дросселей, трансформаторов радио и электротехнических устройств, что приводит к эквивалентному изменению значений индуктивностей цепи и модуляции протекающих через них высокочастотных сигналов.19 К наиболее распространенным случайным акустоэлектрическим преобразователям относятся:-вызывные устройства телефонных аппаратов;-динамические головки громкоговорителей, электромагнитные капсюли телефонных трубок, электрические двигатели вторичных часов системы единого времени и бытовых электроприборов;-катушки контуров, дросселей, трансформаторов, провода монтажных жгутов, пластины (электроды) конденсаторов;-пьезоэлектрические вещества (кварцы генераторов, вибро-акустические излучатели акустических генераторов помех);-ферромагнитные материалы в виде сердечников трансформаторов и дросселей.20 Угроза информации от акустоэлектрического преобразователя зависит, прежде всего, от его чувствительности. Чувствительность акустоэлектрического преобразователя характеризуется отношением величины электрического сигнала на его выходе или изменения падающего на нем напряжения к силе звукового давления на поверхность чувствительного элемента преобразователя на частоте f = 1000 кГц и измеряется в В/Па или мВ/Па. Очевидно, что чем выше чувствительность случайного акустоэлектрического преобразователя, тем больше потенциальная угроза от него для безопасности акустической информации.21 № п/пАкустоэлектрический преобразовательЧувствительность, мВ/Па1Электродинамический микрофон4-62Электродинамический громкоговоритель2-33Абонентский громкоговоритель30-454Вторичные электрические часы0,1-0,55Электромеханический звонок телефонного аппарата0,05-0,66Пьезоэлектрическое вызывное устройство телефонного аппарата8-117Телефонный капсюль3-58Электромагнитное реле0,04-0,59Трансформаторы, дроссели0,001-0,2Таблица 122 Чувствительность в мВ/Па некоторых акустоэлектрических преобразователей приведена в табл. 5.1 [11]. Опасные сигналы, образованные акустоэлектрическими преобразователями, могут:-распространяться по проводам, выходящим за пределы контролируемой зоны;-излучаться в эфир;-модулировать другие, более мощные электрические сигналы, к которым возможен доступ злоумышленников.23 Техническую основу для реализации первой угрозы создают, например, неработающий громкоговоритель городской ретрансляционной сети и звонковая цепь телефонных аппаратов устаревших, но широко еще применяемых типов (ТА-68М, ТА-72М, ТАН-70-2, ТАН-76-3, ТА-1146, ТА-1162, ТА-1164 и др.). Головка громкоговорителя непосредственно подключается к кабелю (двухжильному проводу) при приеме первой программы городской ретрансляционной сети через согласующий трансформатор, который повышает амплитуду опасных сигналов до 30-40 мВ. Сигнал такой амплитуды может распространяться по проводам ретрансляционной сети на значительные расстояния, достаточные для снятия информации злоумышленником за пределами территории организации. Однако если в радиотрансляционной сети идет передача речи или музыки, то сигналы этой передачи, имеющие существенно большую (в 100-200 раз) амплитуду и совпадающий диапазон частот, подавляют опасные сигналы. Поэтому работающие громкоговорители, может быть, и мешают работе людей, но исключают утечку информации из помещений через акустоэлектрические преобразователи в громкоговорителях.24 Иная ситуация с акустоэлектрическими преобразователями в телефонных аппаратах. Телефонные линии постоянно подключены к источнику тока напряжением порядка 60 В. Хотя опасные сигналы на выходе звонковой сети составляют единицы и доли мВ, их нетрудно отделить с помощью фильтра от значительно более высокого напряжения постоянного тока в телефонной линии. Постоянный ток фильтр не пропускает, а опасные сигналы с речевой информацией от акустоэлектрических преобразователей с частотами в звуковом диапазоне проходят через фильтр с малым ослаблением, а затем усиливаются до необходимого значения.25 Опасными сигналами (радио и электрическими) на выходе акустоэлектрических преобразователей, имеющими даже весьма малые значения (доли милливольт), нельзя пренебрегать. Во-первых, чувствительность современных радиоприемников и усилителей электрических сигналов превышает в десятки и сотни раз уровни наиболее распространенных опасных сигналов, а, во-вторых, маломощные опасные сигналы могут модулировать более мощные электрические сигналы и поля и таким образом увеличивать дальность распространения опасных сигналов. Например, если опасные сигналы попадают в цепи генераторов (гетеродинов) любого радио- или телевизионного приемника, то они модулируют гармонические колебания этих генераторов по амплитуде или частоте и распространяются за пределы помещения уже в виде электромагнитной волны. Также поля опасных сигналов на выходе акустоэлектрических преобразователей, которые сами по себе из-за малой напряженности не несут большой угрозы безопасности информации, могут наводить в цепях рядом расположенных радиоэлектронных средств электрические сигналы с аналогичным эффектом.26 2. Паразитные связи и наводки27 В результате воздействия побочных полей и влияния через проводники и резисторы сигналов одних узлов и блоков на сигналы других блоков и узлов возникают паразитные связи и наводки как внутри радиоэлектронных средств, так и между рядом расположенными средствами. Эти связи и наводки ухудшают работу узлов, блоков и средств в целом. Поэтому при проектировании радиоэлектронных средств уровни этих паразитных связей и наводок снижают до допустимых значений. Чем выше требования к характеристикам средств, тем требуются большие усилия, а следовательно, и затраты для нейтрализации паразитных связей и наводок. Основная часть высокой цены (десятки тысяч долларов) высокоточных контрольноизмерительных приборов фирм Hewlett Packard, Ronde & Scwarz и др. приходится на меры по уменьшению паразитных связей и наводок.28 Однако несмотря на принимаемые меры по снижению уровня паразитных связей и наводок для обеспечения требуемых характеристик радиоэлектронного средства, остаточный их уровень создает угрозы для информации, содержащейся в информационных параметрах сигналов, циркулирующих в радиоэлектронном средстве. Поэтому любое радиоэлектронное средство или электрический прибор следует с точки зрения информационной безопасности рассматривать как потенциальный источник угрозы безопасности информации. Известны три вида паразитных связей: емкостная; индуктивная; гальваническая. Емкостная связь образуется в результате воздействия электрического поля, индуктивная — воздействия магнитного поля, гальваническая связь — через общее активное сопротивление.29 30Емкостная связь 31 32 33 Для реальных радиоэлектронных средств сложной конфигурации собственная емкость Сп определяется экспериментально путем размещения средства в однородном электрическом поле и измерением наведенного напряжения на его выходе Uн. Предварительно измеряется наведенное эталонное напряжение U в простейшем устройстве (диске, шаре и др.) с известной (эталонной) собственной емкостью Спэ, помещенном в это поле. На основе полученных данных собственная емкость Сп исследуемого средства определяется методом замещения, в соответствии с которым Cn = Спэ Uн/U .34 35 36 Взаимная индуктивность замкнутых цепей зависит от взаимного расположения и конфигурации проводников. Она тем больше, чем большая часть магнитного поля тока в одной цепи пронизывает проводники другой цепи.Следует различать взаимную индуктивность между проводниками разных цепей от индуктивности проводника. Индуктивность характеризует свойство проводника препятствовать изменению проходящего через него тока, которое обусловлено явлением самоиндукции. Она возникает, когда силовые линии переменного магнитного поля пронизывают проводники, по которым протекает ток, создающий это магнитное поле. 37 Гальваническую паразитную связь еще называют связью через общее сопротивление, входящее в состав нескольких цепей. Такими общими сопротивлениями могут быть сопротивление соединительных проводов и устройств питания и управления. Например, узлы и блоки компьютера, осуществляющего обработку информации, соединены с напряжением +5 В блока питания. Для установки «О» триггеров дискретных устройств на соответствующие их входы подается одновременно соответствующий сигнал управления. 38 39 Если побочные поля и электрические токи являются носителями защищаемой информации, то паразитные наводки и связи могут приводить к утечке информации. Следовательно, паразитные связи и наводки представляют собой побочные физические процессы и явления, которые могут приводить к утечке защищаемой информации.Возможность утечки информации через паразитные связи и наводки носит вероятностный характер и зависит от многих факторов, в том числе от конфигурации, размеров (относительно периода колебаний протекающих токов) и взаимного положения излучающих и принимающих токопроводящих элементов средств.40 В отличие от предусмотренных для связи функциональных антенн, конструкция и характеристики которых определяются при создании радиопередающих и радиоприемных средств, эти элементы можно назвать случайными антеннами. Случайными антеннами могут быть монтажные провода, соединительные кабели, токопроводы печатных плат, выводы радиодеталей, металлические корпуса средств и приборов и другие элементы средств. Параметры случайных антенн существенно хуже функциональных. Но из-за небольших расстояний между передающими и приемными случайными антеннами (в радиоэлектронном средстве или одном помещении) они создают угрозы утечки информации. Случайные антенны имеют сложную и часто априори неопределенную конфигурацию, достаточно точно рассчитать значения их электрических параметров, совпадающих с измеряемыми, очень сложно. Поэтому реальную случайную антенну заменяют ее моделями в виде проволочной антенны — отрезка провода (вибратора) и рамки.41 42 Коэффициент усиления случайной антенны в виде замкнутой цепи (рамки) оценивается с помощью параметра, названного действующей длиной антенны Lд = Ua/На. По аналогии со способами определения собственной емкости средства действующая высота (длина) случайной антенны находится методом замещения. Паразитные связи могут вызывать утечку информации по проводам и создавать условия для возникновения побочных электромагнитных излучений. За счет паразитных связей возникают опасные сигналы в проводах кабелей различных линий и цепей, в том числе в цепях заземления и электропитания, а также возникают паразитные колебания в усилителях, дискретных устройствах и др.43 44нал. 45 Так как кабели в здании укладываются в специальных колодцах и нишах, то между кабелями за счет их достаточно близкого и параллельного на большом расстоянии расположения возникают достаточно большие паразитные связи между кабелями внутренней и городской АТС, других информационных линий связи, цепями электропитания и заземления. Так как сотрудники организации при разговоре по телефонам внутренней АТС чаще допускают нарушения режима секретности (конфиденциальности), чем во время разговора по городской АТС, то при регулярном подслушивании разговоров по внутренней АТС можно добыть ценную информацию.46 Современная архитектура служебных помещений предусматривает создание между межэтажными перекрытиями и потолком (полом) свободного пространства для прокладки различных кабелей (электропитания, внутренней и городской АТС, трансляции, оперативной и диспетчерской связи, сетей передачи данных и др.). Это создает дополнительные возможности для возникновения между проводами кабелей паразитных связей и появления опасных сигналов, распространяющихся за пределы контролируемой зоны.47 3. Низкочастотные и высокочастотные излучения технических средств48 Большую угрозу безопасности информации создают также побочные излучения радио- и электротехническими средствами электромагнитных полей, содержащих защищаемую информацию. Источниками излучений могут быть цепи, содержащие статические или динамические заряды (электрический ток), в информационные параметры которых тем или иным способом записывается защищаемая информация. Носители защищаемой информации в виде статических или динамических зарядов могут попадать в эти цепи непосредственно, если эти цепи участвуют в обработке, передаче и хранении защищаемой информации или сами элементы цепей обладают свойствами акустоэлектрических преобразователей, или опосредованно, когда опасные сигналы проникают в излучающие цепи через паразитные связи.49 Вид излучения и характер распространения электромагнитного поля в пространстве зависит от частоты колебаний поля и вида излучателя. Различают низкочастотное и высокочастотные опасные излучения. Под низкочастотными излучениями понимаются излучения электромагнитных полей, частоты которых соответствуют звуковому диапазону. Источниками таких излучений являются устройства и цепи звукоусилительной аппаратуры (микрофоны, усилители мощности, аудиомагнитофоны, громкоговорители и их согласующие трансформаторы, кабели между микрофонами и усилителями, усилителями и громкоговорителями, цепи, содержащие случайные акустоэлектрические преобразователи, телефонные аппараты и кабели внутренней АТС и др.).50 Наибольшую угрозу создают средства звукофикации помещений для озвучивания акустической информации, содержащей государственную или коммерческую тайну. Эти средства включают микрофоны, усилители мощности, громкоговорители, устанавливаемые на стенах больших помещений (залов для совещаний, конференцзалов) или в спинки кресел, а также соединительные кабели. Причем часто усилители мощности размещаются в техническом помещении, удаленном на значительном расстоянии от конференцзала. По проводам кабелей звукоусилительной аппаратуры протекают большие токи, составляющие доли и единицы ампер. Эти токи создают мощные магнитные поля, которые, во-первых, могут распространяться за пределы выделенного помещения, здания и даже организации, а во-вторых, наводить ЭДС в любых токопроводящих конструкциях, в том числе в цепях электропитания и металлической арматуре зданий.51 К высокочастотным опасным излучениям относятся электромагнитные поля, излучаемые цепями радиоэлектронных средств, по которым распространяются высокочастотные (выше звукового диапазона) сигналы с секретной (конфиденциальной) информацией. Можно утверждать, что если не приняты специальные дополнительные меры, то источниками подобных опасных побочных ВЧ-излучений могут быть любые цепи радио- и электрических средств. 52 К основным источникам побочных излучений с мощностью, достаточной для распространения электромагнитного поля за пределы контролируемой зоны, например помещения, относятся:а)-гетеродины радио- и телевизионных приемников;б)-генераторы подмагничивания и стирания аудио- и видеомагнитофонов;в)-усилители и логические элементы в режиме паразитной генерации;г)-элементы ВЧ-навязывания;д)-электронно-лучевые трубки средств отображения защищаемой информации (мониторов, телевизоров);е)-мониторы, клавиатура, принтеры и другие устройства компьютеров, в которых циркулируют сигналы в параллельном коде.53 а)Гетеродины радио- и телевизионных приемников являются генераторами гармонических колебаний, необходимыми для преобразования частоты принимаемого сигнала в промежуточную частоту. Гармоническое колебание с гетеродина подается на смеситель, на нелинейном элементе (диоде или транзисторе) которого осуществляется преобразование входного (принимаемого) сигнала в сигнал промежуточной частоты. Частоты сигналов гетеродинов отличаются на величину промежуточной частоты (465 кГц — для ДВ-, СВ- и КВ-диапазонов, 10 МГц— для УКВ-диапазонов) от принимаемых сигналов и могут иметь значения от сотен кГц до десятков ГГц. 54 Если элементы контура (индуктивность и емкость) гетеродина обладают свойствами акустоэлектрических преобразователей или в него проникают опасные сигналы от других акустоэлектрических преобразователей, то возможна амплитудная или частотная модуляция сигналов гетеродина. Мощность излучения модулированных сигналов гетеродина тем больше, чем ближе значения длины волны гармонического колебания к длине цепей, по которым протекают сигналы гетеродинов. Часто она бывает достаточной для подслушивания речевой информации в кабинете руководителя с включенным радио- или телевизионным приемником с помощью бытовых радиоприемников в соседних помещениях или даже зданиях.55 б) Генераторы сигналов высокочастотного подмагничивания и стирания магнитофонов создают гармонические колебания на частотах в сотни кГц. Генераторы сигналов высокочастотного подмагничивания необходимы для обеспечения аналоговой аудио- и видеозаписи с малыми нелинейными искажениями. Зависимость остаточной намагниченности магнитной пленки от напряженности магнитного поля в головке записи нелинейная, что вызывает нелинейные искажения в записанном сигнале. Путем подачи в магнитную головку наряду с током записи дополнительного тока подмагничивания с частотой около 100 кГц и амплитудой, в 6-8 раз превышающей максимальную амплитуду тока записи, устанавливается рабочая точка для тока записи на линейном участке кривой намагничивания магнитной ленты. В результате выбора оптимального тока подмагничивания удается уменьшить нелинейные искажения сигналов записи до единиц процентов.56 Генератор высокочастотного стирания обеспечивает стирание записанной на магнитную ленту информации путем размагничивания ее магнитного слоя практически до нуля. Для этого в стирающую головку аудиомагнитофона подается ток с частотой 50-100 кГц. При такой частоте тока стирания и уменьшения напряженности магнитного поля головки в результате удаления стираемого элементарного участка движущейся магнитной ленты от зазора стирающей магнитной головки происходит многократное перемагничивание участка с убывающей до нуля намагниченностью. В отличие от высокочастотного стирания уничтожение информации путем воздействия на магнитный слой магнитным полем постоянного магнита, который применяется в качестве стирающей головки в специальных диктофонах, обеспечивается путем намагниченности магнитного слоя ленты до насыщения.57 в)Паразитная генерация может возникнуть при определенных условиях в усилителях и логических элементах дискретной техники. Логический элемент рассматривается в данном контексте как усилитель с очень высоким коэффициентом усиления. отношению к входному. В усилителе напряжения фаза выходного сигнала для нечетного числа каскадов усиления изменяется на 180°, а при четном числе каскадов совпадает с фазой входного сигнала.Так как между элементами усилителя всегда существуют емкостные, индуктивные и гальванические паразитные связи, то на входе усилителя наряду с усиливаемым внешним сигналом присутствуют сигналы, проникшие во входные цепи через паразитную обратную связь, в том числе с выхода усилителя. 58 59 60 Первое условие определяет минимально необходимую для возникновения паразитной генерации величину коэффициента паразитной обратной связи. Чем выше коэффициент усиления усилителя, тем меньший коэффициент паразитной обратной связи создает предпосылки для возникновения генерации. Например, если Кос = 10, то для возникновения генерации необходимо проникновение 0,1 части выходного сигнала на вход усилителя. Для усилителя с Кус = 100 достаточно поступления на его вход 0,01 части выходного сигнала. Эта зависимость объясняет возможность паразитной генерации в логических элементах дискретной техники. Высокий коэффициент усиления логического элемента и высокая частота спектральных составляющих фронта дискретного сигнала создают благоприятные условия для возникновения паразитной генерации в логических элементах.61 Второе условие предусматривает, что изменение фазы сигнала обратной связи должно быть противоположно величине фазового сдвига усилителя. Это означает, что фазы внешнего сигнала и сигнала обратной связи должны быть приблизительно равными. Обратная связь, при которой фаза сигнала на входе усилителя совпадает с фазой сигнала обратной связи, называется положительной, а когда фазы этих сигналов противоположные — отрицательной. Если положительная обратная связь способствует паразитной генерации, то отрицательная, наоборот, повышает стабильность работы усилителя, но за счет некоторого снижения напряжения на выходе усилителя. Поэтому в усилителях с высоким коэффициентом усиления для исключения паразитной генерации создают между каскадами отрицательную обратную связь, а также применяют комплекс мер по уменьшению паразитных связей. С этой целью при монтаже используют короткие экранированные провода, элементы входных и выходных цепей разносят на максимально возможное расстояние, экранируют трансформаторы усилителей, в цепи питания предварительных каскадов устанавливают RC-фильтры низких частот, усилительные каскады размещают в одну линию и др.62 Опасность паразитной генерации состоит также в том, что она часто возникает на частотах выше рабочего диапазона и без специальных исследований не обнаруживается. Действительно, с ростом частоты обрабатываемых сигналов увеличиваются значения паразитных емкостных и индуктивных сопротивлений между каскадами. В результате этого увеличиваются Кос и сдвиг фазы сигналов, прошедших через паразитные связи. Поэтому возможность выполнения условий генерации в усилителе на частотах, превышающих верхнюю частоту рабочего диапазона частот усилителя, повышается. Хотя на этой частоте полезные сигналы на вход усилителя не подаются, но на его входе присутствуют сигналы, обусловленные тепловым шумом и проникшие через паразитную обратную связь. Любая шумовая реализация на входе усиливается усилителем и частично возвращается через паразитную обратную связь на его вход. При равенстве фаз величина суммарного сигнала на входе усилителя повышается, что приводит к росту сигнала на выходе усилителя. Следствием этого является увеличение сигнала U и дальнейшее увеличение сигнала на входе усилителя и т. д. 63 Происходит лавинообразный процесс нарастания амплитуды сигнала на входе и выходе усилителя, завершаемый процессом непрерывной генерации на частоте Wрез. Поэтому не рекомендуется, например, применять в усилителях низкой частоты высокочастотные транзисторы, которые усиливают шумы с частотами выше верхней границы рабочего диапазона частот.Паразитная генерация усилителя или логического элемента создает угрозу информации, если она записывается в информационные параметры паразитного колебания, т. е. происходит его модуляция информационными сигналами. Это явление возникает в случае, если цепи паразитного генератора содержат акустоэлектрические преобразователи или в них попадают опасные сигналы от других случайных акустоэлектрических преобразователей усилителя.64 г) К излучающим элементам ВЧ-навязывания относятся радио- и механические элементы, которые обеспечивают модуляцию подводимых к ним внешних электрических и радиосигналов. К таким элементам относятся:нелинейные элементы, на которые одновременно поступают низкочастотный электрический сигнал с защищаемой информацией (опасный сигнал) и высокочастотный гармонический сигнал;токопроводящие механические конструкции, изменяющие свой размер и переотражающие внешнее электромагнитное поле. Если на нелинейный элемент (диод, транзистор) подаются 2 сигнала: низкочастотный сигнал Uc(t), в информационные параметры которых записана информация, и высокочастотный (сотни кГц —единицы МГц) гармонический сигнал Uвч от внешнего генератора, то в токе через нелинейный элемент появятся высокочастотные составляющие, модулированные по амплитуде опасным сигналом.65 66 Действительно, ток, протекающий в нелинейном эле­ А из этого выражения следует наличие в спектре тока высокочастотных гармоник опасного сигнала, несущих защищаемую информацию. Этот ток создает электромагнитное поле, мощность которого зависит не только от мощности сигналов, но и от соотношения длины его волны и длины цепи, по которой протекает ток. Такой вариант реализуется путем подачи внешнего высокочастотного электрического сигнала в телефонную проводную линию. 67 Другим видом излучателя ВЧ-навязывания являются механические конструкции, способные изменять свой размер под действием акустической волны и переотражать внешнее электромагнитное поле. Такие конструкции, как правило, образуют замкнутую по токопроводящими поверхностями, одна из которых — тонкая и способна колебаться в соответствии с акустическим сигналом мембрана. При колебании мембраны изменяются геометрические размеры полости. Полость представляет собой колебательный контур, собственная частота которого определяется ее геометрическими размерами. При облучении конструкции электромагнитным полем с частотой колебания, равной собственной частоте контура, возникают резонансные явления и переотражается максимум энергии облучаемого поля. При колебаниях мембраны изменяются частота и напряженность переотраженного поля. После приема переотраженного поля из него можно выделить путем демодуляции электрический сигнал, соответствующий акустическому. Такой излучатель ВЧ-навязывания по существу представляет собой пассивный акустоэлектрический преобразователь подводимой энергии.68 д) Люминофор электронно-лучевых трубок средств отображения под действием электронов излучает, кроме света, электромагнитное поле в широком диапазоне радиочастот с напряженностью, которая обеспечивает возможность перехвата сигналов на удалении в десятки метров. Учитывая, что сигналы управления электроннымлучом трубки подаются последовательно во времени, их побочные ВЧ-излучения создают серьезную угрозу для отображаемой на экране трубки информации.69 е) Устройства компьютера, в которых распространяются сигналы в последовательном коде (мониторы, клавиатура, принтеры и другие), также представляют собой источники опасных сигналов. Замена монитора компьютера на электроннолучевой трубке на жидкокристаллический монитор не устраняет проблему защиты информации, отображаемой на его экране. Хотя экран жидкокристаллического монитора не создает опасные излучения, но в устройстве управления значениями пикселей строки монитора присутствуют последовательные информационные сигналы. Спектр этих сигналов имеет широкий спектр в диапазоне сотен МГц. В результате их перехвата возможно восстановление изображения.70

Приложенные файлы

  • pptx 5987853
    Размер файла: 492 kB Загрузок: 0

Добавить комментарий