МиИ Лекция 12. Применение мультимедийных технологий

Лекция 12
«Применение мультимедийных технологий»


Содержание
Введение
Учебные вопросы:
Мультимедиа технологии – основные понятия.
Классификация и структурные компоненты мультимедиа.
Форматы мультимедиа информации.
Аппаратные и программные средства мультимедиа информации.
Заключение

Введение
Средства представления, хранения, распространения информации всегда сопровождали и формировали человеческую цивилизацию. Люди в области развития информационных технологий прошли долгий путь от книг и почты через радио, телеграф, телефон до мультимедийной рабочей станции, соединяющей в себе все возможности работы с информацией в виде текста, графики, звука, видео и телевизионного изображения.
Любой человек, как субъект информационного общества, должен уметь оперировать в пространстве различных видов информации. Другими словами, актуальной задачей информационного общества является формирование принципиально новой информационной культуры. Она проявляется в умении поиска необходимых данных в различных источниках информации; способности использовать в своей деятельности компьютерные технологии; овладении практическими способами работы с различной, в том числе мультимедийной, информацией.

1. Мультимедиа технологии – основные понятия.

Мультимедиа взаимодействие визуальных и аудиоэффектов под управлением интерактивного программного обеспечения с использованием современных технических и программных средств, они объединяют текст, звук, графику, фото, видео в одном цифровом представлении.
Термин «мультимедиа» с английского можно перевести как «многие среды» (от multi – много и media – среда).
В настоящее время мультимедиа-технологии являются бурно развивающейся областью информационных технологий. В этом направлении активно работает значительное число крупных и мелких фирм, технических университетов и студий (в частности IBM, Apple, Motorola, Philips, Sony, Intel и др.). Области использования чрезвычайно многообразны: интерактивные обучающие и информационные системы, САПР и др.
Основными характерными особенностями этих технологий являются:
объединение многокомпонентной информационной среды (текста, звука, графики, фото, видео) в однородном цифровом представлении;
обеспечение надежного (отсутствие искажений при копировании) и долговечного хранения (гарантийный срок хранения – десятки лет) больших объемов информации;
простота переработки информации (от рутинных до творческих операций).
Достигнутый технологический базис основан на использовании нового стандарта оптического носителя DVD (Digital Versalite/Video Disk Digital Versatile Disc цифровой многоцелевой диск), имеющего емкость порядка единиц и десятков гигабайт и заменяющего все предыдущие: CD-ROM, Video-CD, CD-audio. Использование DVD позволило реализовать концепцию однородности цифровой информации. Одно устройство заменяет аудиоплейер, видеомагнитофон, CD-ROM, дисковод, слайдер и др. В плане представления информации оптический носитель DVD приближает ее к уровню виртуальной реальности.
Многокомпонентную мультимедиа-среду целесообразно разделить на три группы: аудиоряд, видеоряд, текстовая информация.
Аудиоряд может включать речь, музыку, эффекты (звуки типа шума, грома, скрипа и т.д., объединяемые обозначением WAVE (волна). Главной проблемой при использовании этой группы мультисреды является информационная емкость. Для записи одной минуты WAVE-звука высшего качества необходима память порядка 10 Мбайт, поэтому стандартный объем CD (до 640 Мбайт) позволяет записать не более часа WAVE. Для решения этой проблемы используются методы компрессии звуковой информации.
Другим направлением является использование в мультисреде звуков (одноголосая и многоголосая музыка, вплоть до оркестра, звуковые эффекты) MIDI (Musical Instrument Digitale Interface). В данном случае звуки музыкальных инструментов, звуковые эффекты синтезируются программно-управляемыми электронными синтезаторами. Коррекция и цифровая запись MIDI-звуков осуществляется с помощью музыкальных редакторов (программ-секвенсоров). Главным преимуществом MIDI является малый объем требуемой памяти – 1 минута MIDI-звука занимает в среднем 10 Кбайт.
Видеоряд по сравнению с аудиорядом характеризуется большим числом элементов. Выделяют статический и динамический видеоряды.
Статический видеоряд включает графику (рисунки, интерьеры, поверхности, символы в графическом режиме) и фото (фотографии и сканированные изображения).
Динамический видеоряд представляет собой последовательность статических элементов (кадров). Можно выделить три типовых группы:
обычное видео (life video) – последовательность фотографий (около 24 кадров в секунду);
квазивидео – разреженная последовательность фотографий (6–12 кадров в секунду);
анимация – последовательность рисованных изображений.
Первая проблема при реализации видеорядов – разрешающая способность экрана и число цветов. Выделяют три направления:
стандарт VGA дает разрешение 640 ґ 480 пикселей (точек) на экране при 16 цветах или 320 ґ 200 пикселей при 256 цветах;
стандарт SVGA (видеопамять 512 кбайт, 8 бит/пиксель) дает разрешение 640 ґ 480 пикселей при 256 цветах;
24-битные видеоадаптеры (видеопамять 2 Мбайт, 24 бит/пиксель) позволяют использовать 16 млн цветов.
Вторая проблема – объем памяти. Для статических изображений один полный экран требует следующие объемы памяти:
в режиме 640 ґ 480, 16 цветов – 150 кбайт;
в режиме 320 ґ 200, 256 цветов – 62,5 кбайт;
в режиме 640 ґ 480, 256 цветов – 300 кбайт.
Такие значительные объемы при реализации аудио- и видеорядов определяют высокие требования к носителю информации, видеопамяти и скорости передачи информации.
При размещении текстовой информации на CD-ROM нет никаких сложностей и ограничений ввиду большого информационного объема оптического диска.
Основные направления использования мультимедиа-технологий:
информационная и рекламная деятельности;
шоу-бизнес;
создание персональных фоно- и видеотек;
компьютерные тренажеры;
компьютерные игры;
обучающие программы;
энциклопедии;
электронные издания для целей образования и др.;
в телекоммуникациях со спектром возможных применений от просмотра заказной телепередачи и выбора нужной книги до участия в мультимедиа-конференциях. Такие разработки получили название Information Highway;
мультимедийные информационные системы («мультимедиа-киоски»), выдающие по запросу пользователя наглядную информацию.
С точки зрения технических средств на рынке представлены как полностью укомплектованные мультимедиа-компьютеры, так и отдельные комплектующие и подсистемы (Multimedia Upgrade Kit), включающие в себя звуковые карты, приводы компакт-дисков, джойстики, микрофоны, акустические системы.
Для персональных компьютеров класса IBM PC утвержден специальный стандарт МРС, определяющий минимальную конфигурацию аппаратных средств для воспроизведения мультимедиа-продуктов. Для оптических дисков CD-ROM разработан международный стандарт (ISO 9660).
Таким образом, мультимедиа – одновременное использование различных форм представления информации и ее обработки в едином объекте-контейнере. Например, в одном объекте-контейнере может содержаться текстовая, аудиальная, графическая и видео информация, а также, возможно, способ интерактивного взаимодействия с ней. Термин мультимедиа также зачастую используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним (первыми носителями такого типа были CD-ROM). В таком случае термин мультимедиа означает, что компьютер может использовать такие носители и предоставлять информацию пользователю через все возможные виды данных, такие как аудио, видео, анимация, графика и другие в дополнение к традиционным способам представления информации, таким как текст.

2. Классификация и структурные компоненты мультимедиа


Мультимедиа в зависимости от способа представления информации может быть представлена следующими группами:
Линейная. Аналогом линейного способа представления является кино. Человек, просматривающий данный документ, никаким образом не может повлиять на его вывод.
Нелинейная. Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных. Участие человека в данном процессе также называется интерактивностью.
Нелинейный способ представления мультимедийных данных иногда называется термином «гипермедиа».
В качестве примера линейного и нелинейного способа представления информации, можно рассматривать такую ситуацию, как проведение презентации. Если презентация была записана на пленку и показывается аудитории, то этот способ донесения информации может быть назван линейным, так как просматривающие данную презентацию не имеют возможности влиять на докладчика. В случае же живой презентации аудитория имеет возможность взаимодействовать с докладчиком (например, задавать ему вопросы), что позволяет ему отходить от темы презентации, поясняя некоторые термины или более подробно освещая спорные части доклада. Таким образом, живая презентация может быть представлена, как нелинейный (интерактивный) способ подачи информации.
Структурные компоненты мультимедиа
Рассмотрим основные компоненты мультимедийных объектов.
Текст
Текст – это упорядоченный набор предложений, предназначенный для того, чтобы выразить некий смысл. В смысловой цельности текста отражаются те связи и зависимости, которые имеются в самой действительности (общественные события, явления природы, человек, его внешний облик и внутренний мир, предметы неживой природы и т.д.).
Текстовый файл – обычная форма представления текста на компьютере. Каждый символ из используемого набора символов кодируется в виде одного байта, а иногда в виде последовательности подряд идущих двух, трех и более байтов. Особой разновидностью текстовых данных следует считать так называемый гипертекст. Термин «гипертекст» был введен Тедом Нельсоном в 1965 году для обозначения «текста ветвящегося или выполняющего действия по запросу». Обычно гипертекст представляется набором текстов, содержащих узлы перехода от одного текста к какому-либо другому, позволяющие избирать читаемые сведения или последовательность чтения. Общеизвестным и притом ярко выраженным примером гипертекста служат веб-страницы – документы на HTML (гипертекстовом языке разметки), размещенные в интернете.
Аудио
Аудио (от лат. audio –«слышу») – общий термин, относящийся к звуковым технологиям. Как правило, под термином аудио понимают звук, записанный на звуковом носителе, а также запись и воспроизведение звука, звукозаписывающая и звуковоспроизводящая аппаратура.
Таким образом, аудиальный компонент мультимедийной информации предназначен для передачи звуковых данных. Как физическое явление звук изучается в рамках акустики, но при этом акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, теорию музыки и др. Непосредственное отношение к вопросам мультимедиа-технологий имеют такие направления современной акустики, как музыкальная акустика, электроакустика, акустика речи, цифровая акустика.
По содержанию аудиальный компонент мультимедиа обычно классифицируется на музыкальный и речевой звук. Музыкальный звук обладает следующими характеристиками:
определенной высотой (обычно от 16 до 4500 Гц);
тембром, который определяется присутствием в звуке обертонов и зависит от источника звука;
громкостью, которая не может превышать болевого порога;
длительностью.

Кодирование звука

Из курса физики известно, что звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем звук громче. Чем выше частота колебаний, тем выше тон (частота колебаний измеряется в герцах (штук в секунду). Человеческое ухо способно улавливать колебания от 20 Гц до 20 кГц. На рисунке 1 ниже в виде зависимости амплитуды от времени показан фрагмент звуковой волны:
[ Cкачайте файл, чтобы посмотреть картинку ]
Рисунок 1. Аналоговый звуковой сигнал

Для того чтобы компьютер мог обрабатывать звук, такой непрерывный (аналоговый) звуковой сигнал должен быть преобразован в последовательность электрических импульсов (двоичных нулей и единиц).
Для кодирования непрерывного звукового сигнала производится его дискретизация по времени (временная дискретизация, оцифровка). Непрерывная звуковая волна разбивается на отдельные короткие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Это выполняется устройством, называемым аналогово-цифровым преобразователем (АЦП), который измеряет напряжение поступающего с микрофона звукового сигнала через равные промежутки времени и записывает полученные значения (в виде многоразрядных двоичных чисел) в память компьютера. В результате, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность значений уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рисунок 2).
[ Cкачайте файл, чтобы посмотреть картинку ]
Рисунок 2. Дискретизация звукового сигнала
Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, для которого служит цифро-аналоговый преобразователь (ЦАП), а затем сгладить получившийся ступенчатый сигнал (через аналоговый фильтр).

[ Cкачайте файл, чтобы посмотреть картинку ]
Рисунок 3. Система преобразования звукового сигнала
Каждой «ступеньке» присваивается значение уровня громкости (амплитуды) звука, его код (1, 2, 3, и т. д.). Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Уровни громкости звука можно рассматривать как набор возможных состояний. Соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Поэтому, как и в случае с графической информацией, при кодировании звука важное значение имеет «глубина» кодирования звука. Например, при 16-битной глубине кодирования (когда каждому значению амплитуды звукового сигнала присваивается 16-битный код) количество обеспечиваемых различных уровней сигнала (состояний) можно определить следующим образом: N = 216 = 65536.
Итак, процесс преобразования непрерывного аналогового сигнала в последовательность его мгновенных значений (выборок) называется дискретизацией
Компьютерная графика
Данное направление мультимедийных технологий предназначено для передачи пользователю визуальных изображений. Первые вычислительные машины не имели отдельных средств работы с графикой, однако уже использовались для получения и обработки изображений. Существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее.
По способам построения изображений компьютерную графику можно разделить на двумерную и трехмерную графику.
Двумерная компьютерная графика (2D) классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений.
Известны следующие виды двумерной графики: растровая, векторная фрактальная.
Трехмерная компьютерная графика (3D) оперирует с объектами в трехмерном пространстве. Обычно результаты визуализации трехмерной графики представляют собой плоскую картинку, проекцию. В трехмерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона чаще всего выбирают треугольники.
Содержание видов компьютерной графики рассмотрено на лекции 9/1.
Видео
Видео (от лат. video – «смотрю», «вижу») – под этим термином понимают широкий спектр технологий записи, обработки, передачи, хранения и воспроизведения визуального и аудиовизуального материала на мониторах.
Наиболее важные характеристики видеосигнала – это количество кадров в секунду, развертка, разрешение, соотношение сторон, цветовое разрешение, ширина видеопотока, качество. Рассмотрим эти характеристики по отдельности.
Количество кадров в секунду (частота) – это число неподвижных изображений, сменяющих друг друга при показе 1 секунды видеоматериала и создающих эффект движения на экране. Чем больше частота кадров, тем более плавным и естественным будет казаться движение. Минимальный показатель, при котором движение будет восприниматься однородным – примерно 10 кадров в секунду (это значение индивидуально для каждого человека). Компьютерные оцифрованные видеоматериалы хорошего качества, как правило, используют частоту 30 кадров в секунду.
Развертка видеоматериала может быть прогрессивной (построчной) или чересстрочной (интерлейсинг). При прогрессивной развертке все горизонтальные линии (строки) изображения отображаются одновременно, при чересстрочной – показываются попеременно четные и нечетные строки. Чересстрочная развертка была изобретена для показа изображения на кинескопах и используется сейчас для передачи видео по «узким» каналам, не позволяющим передавать изображение во всем качестве.
Любой видеосигнал характеризуется вертикальным и горизонтальным разрешением, измеряемым в пикселах. Обычное аналоговое телевизионное разрешение составляет 720Ч576 пикселей. Новый стандарт высокоотчетливого цифрового телевидения HDTV предполагает разрешения до 1920Ч1080 с прогрессивной разверткой.
Соотношение ширины и высоты кадра – важнейший параметр в любом видеоматериале. Старому стандарту, который предписывает соотношение сторон как 4:3, появившемуся еще в 1910 году, на смену приходит более соответствующий естественному полю зрения человека стандарт 16:9, на который сейчас ориентируется цифровое телевидение.
Количество цветов и цветовое разрешение видеосигнала описывается цветовыми моделями, рассмотренными ранее в лекции 9/1. В компьютерной технике применяется в основном RGB и HSV.
Ширина видеопотока или битрейт (от англ. bit rate – частота битов) – это количество обрабатываемых бит видеоинформации за секунду времени. Чем выше ширина видеопотока, тем в общем лучше качество видео. Например, для формата VideoCD битрейт составляет всего примерно 1 Мбит/с, для DVD –около 5 Мбит/с, а для формата HDTV –около 10 Мбит/с.
Качество видео измеряется с помощью формальных метрик, таких, как PSNR или SSIM, или с использованием субъективного сравнения с привлечением экспертов.
Процесс преобразования видеосигнала из внешнего источника в цифровой видеопоток при помощи персонального копмьютера и запись его в видеофайл с целью последующей его обработки, хранения или воспроизведения принято называть захват видео или оцифровка видео.
Внешним источником могут выступать видеокамеры, магнитофоны, DVD-проигрыватели, потоковое вещание в сети, ТВ-тюнеры, ресиверы цифрового телевидения и другие устройства.
В качестве приложений, которые позволяют захватывать видео и записывать его на жесткий диск, используют видеоредактор либо видеорекодер. Так как несжатое видео имеет большой поток данных (270 Мбит/с для SDTV или до 2,970 Гбит/с для HDTV), для его уменьшения применяют сжатие при помощи видеокодеков. Для разных целей настройки и параметры кодеков могут сильно отличаться: для передачи видеопотока в интернет может составлять несколько сотен кбит/с, для целей телевещанияили последующего монтажа достигать десятков Мбит/с.
В случае последующего видеомонтажа основной целью видеозахвата является передача видео с максимальным качеством, при этом предпочтительно использовать алгоритмы сжатия, в которых применияется внутрикадровое кодирование без межкадрового кодирования, что упрощает доступ к каждому отдельному кадру.
3. Форматы мультимедиа информации
Полученный в результате оцифровки звука или видео массив данных («цифровое представление» оригинального объекта) может использоваться компьютером для дальнейшей обработки, передачи по цифровым каналам, сохранению на цифровой носитель. Перед передачей или сохранением цифровое представление, как правило, подвергается фильтрации и кодированию для уменьшения объема.
Сжатием мультимедиа информации занимаются особые программы – кодеки, являющиеся важнейшим программным элементом компьютера как мультмедийного центра.
Именно благодаря кодекам возможно прослушивание и просмотр аудио и видео соответственно, при приемлемых размерах файлов. Итак, кодек – программа, сжимающая цифровой поток (кодирование) и также с помощью которой он воспроизводится (декодирование). По первым слогам этих функций образовано название Кодек (Codec). Кодеки бывают аудио и видео и являются важной частью формата медиа файла. Главная задача и суть кодека - это уменьшить размер файла. При этом существуют разные алгоритмы выполнения этой задачи, справляющиеся с ней с различной эффективностью.
Не стоит путать понятия кодек и формат файла. Формат - это определённая структура представления оцифрованного звука или изображения. А кодек - это программный алгоритм, сжимающий в определённый формат. То есть цель кодека - сжать, а сделать это можно по разному, поэтому для одного формата могут использоваться разные кодеки (с разной степенью качества). Естественно, не обходится здесь без потерь в качестве. Однако алгоритмы настолько хорошо справляются с задачей, что потери часто бывают не заметны. Примером простого алгоритма сжатия аудиоданных может служить, например, вырезание диапазона частот не слышимого для человеческого уха, или, к примеру, если раздаются 2 звука, первый громкий, второй тихий, при этом получается, что ухо не слышит второго звука, логично, что можно обойтись без второго звука. В изображении, если имеется преимущество одного цвета в кадре, то достаточно лишь описать одну точку с этим цветом, и указать места где он повторяется. Это конечно простые примеры, на деле всё гораздо сложней. Сейчас существуют кодеки, сжимающие без потерь.
Еще раз отметим, что кодеки выполняют и обратную операцию - раскодирования, в этом случае их называют декодерами.
Кодеки преобразуют данные в особый файл, который называют контейнером.
Контейнер - это специальная оболочка, в которой хранится зашифрованная с помощью кодеков информация. По сути, медиаконтейнеры - это и есть форматы видеофайлов, которые содержат данные о своей внутренней структуре. Первый медиаконтейнер был создан в 1985 году. В контейнере может храниться информация разного качества, в частности, изображения, аудио, видео и субтитры. Разные виды контейнеров определяют объем и качество информации, которая может быть в нем сохранена, но при этом не влияют на способы кодирования данных.
Наиболее популярными видео кодеками являются DivX, XviD, H.261, H.263, H.264 и следующие:
MPEG-2 – группа стандартов цифрового кодирования видео и аудио сигналов. MPEG-2 в основном используется для кодирования видео и аудио при вещании, включая спутниковое вещание и кабельное телевидение. С некоторыми модификациями этот формат также используется как стандарт для сжатия DVD.
MPEG-4 – новый международный стандарт сжатия цифрового видео и аудио, появившийся в 1998 году. Используется для вещания (потоковое видео), записи дисков с фильмами, видеотелефонии и широковещания. Включает в себя многие функции MPEG-2 и других стандартов, добавляя такие функции, как поддержка языка виртуальной разметки VRML для показа 3D-объектов, объектно-ориентированные файлы, поддержка управления правами и разные типы интерактивного медиа.
Ogg Theora – видеокодек, разработанный Фондом Xiph.Org как часть их проекта «Ogg» (целью этого проекта является интеграция видеокодека On2 VP3, аудиокодека Ogg Vorbis и мультимедиа-контейнера Ogg в одно мультимедийное решение, наподобие MPEG-4). Полностью открытый, свободный в лицензионном отношении мультимедиа-формат.
Любая операционная система изначально содержит некий набор кодеков, но, как правило, их недостаточно для воспроизведения определенных форматов видеофайлов.
Видеоформаты напрямую на качество не влияют, лишь обеспечивая поддержку кодеков и «технологичность» фильма:
AVI - очень древний стандарт, которому уже более десяти лет. Не соответствует современным требованиям качества и не поддерживает некоторые кодеки (в частности звуковой кодек Vorbis), а также переменный битрейт в кодировании. Существует и проблема с синхронизацией потоков.
MKV – «молодой» тип контейнеров, характеристикой которому станет предыдущий абзац без слов «не». Если перед вами файл с фильмом *.mkv, то, как правило, сам фильм будет высокого качества.
ASF - формат, разработанный в недрах всеми любимой фирмы Microsoft и ими же запатентованный. По непонятным причинам очень бережно ими оберегается, даже законом запрещено использование этого стандарта для видеокодирования и редактирования ASF-фильмов третьими сторонами, то есть пользователями, чтобы его попробовать в кодировке, придётся найти софт, который этот закон не уважил. Сам по себе стандарт очень старый, поэтому вряд ли обеспечивает совместимость с современными кодеками.
VOB - контейнер DVD фильмов. На DVD-диске с фильмом выкладываются несколько VOB-файлов ~ по 1Гб каждый вместе с разными системными файлами (IFO, BUP...). Скинув VOB-файлы на жёсткий диск компьютера, можно их просмотреть с помощью какого-либо видео-плеера. Внутрь VOB-файла зашиваются собственно видео, одна или несколько звуковых дорожек и субтитры.
На практике возникает огромное количество случаев, когда необходимо преобразовать видео из одного формата в другой. Основная проблема заключается в том, что различные устройства накладывают особые требования к качеству загружаемого видео, в частности к его формату. В этой ситуации на помощь приходят специальные программы - конвертеры, которые позволяют переделать видео в нужный формат. Например, удобный видео конвертер на русском языке - ВидеоМАСТЕР.
Аудиоформаты
Среди звуковых носителей информации выделяют аналоговые и цифровые носители. Для целей мультимедиа-технологий наибольшее значение имеют последние, причем преимущественно это аудио-файлы, значительное количество которых было разработано в последние годы. В классификации форматов аудио-файлов выделяют форматы без потерь и форматы с потерями.
Аудиоформаты без потерь предназначены для точного (с точности до частоты дискретизации) представления звука. В свою очередь они делятся на несжатые и сжатые форматы.
Примеры несжатых форматов:
RAW – сырые замеры без какого-либо заголовка или синхронизации.
WAV (Waveform audio format) –разработан Microsoft совместно с IBM, распространенная форма представления звуковых данных небольшой продолжительности.
CDDA – стандарт для аудио-CD. Первая редакция стандарта издана в июне 1980 года компаниями Philips и Sony, затем была доработана организацией Digital Audio Disc Committee.
Примеры сжатых форматов:
WMA (Windows Media Audio 9 Lossless) – лицензируемый формат аудио-файлов, разработанный компанией Microsoft для хранения и трансляции. В рамках формата есть возможность кодирования звука как с потерей, так и без потери качества.
FLAC (Free Audio Lossles Audio Codec) – популярный формат для сжатия аудиоданных. Поддерживается многими аудио-приложениями, а также устройствами воспроизведения звука.
Аудиоформаты с потерями ориентированы в первую очередь на по возможности компактное хранение звуковых данных: при этом идеально точное воспроизведение записанного звука не гарантируется. Примеры таких форматов:
MP3 –лицензируемый формат файла для хранения аудиоинформации, разработанный рабочей группой института Фраунхофера MPEG в 1994 году. На данный момент MP3 является самым известным и популярным из распространенных форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для передачи музыкальных произведений. Формат может проигрываться в любой современной операционной системе, на практически любом портативном аудио-плеере, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.
Vorbis –свободный формат сжатия звука с потерями, появившийся летом 2002 года. Психоакустическая модель, используемая в Vorbis, по принципам действия близка к MP3. По всевозможным оценкам этот формат является вторым по популярности после MP3 форматом компрессии звука с потерями. Широко используется в компьютерных играх и в файлообменных сетях для передачи музыкальных произведений.
AAC (Advanced Audio Coding) –формат аудио-файла с меньшей потерей качества при кодировании, чем MP3 при одинаковых размерах. Изначально создавался как преемник MP3 с улучшенным качеством кодирования, но в настоящий момент распространен существенно меньше, чем MP3.
WMA –см. выше.
Следует отметить, что кроме описания звуковых колебаний в цифровом виде, применяется также создание специальных команд для автоматического воспроизведения на различных электронных музыкальных инструментах, ярчайшим примером такой технологии является MIDI.
Интерфейс MIDI позволяет единообразно кодировать в цифровой форме такие данные как нажатие клавиш, настройку громкости и других акустических параметров, выбор тембра, темпа, тональности и др., с точной привязкой во времени. В системе кодировок присутствует множество свободных команд, которые производители, программисты и пользователи могут использовать по своему усмотрению. Поэтому интерфейс MIDI позволяет, помимо исполнения музыки, синхронизировать управление другим оборудованием, например, осветительным, пиротехническим и т.п.
Последовательность MIDI-команд может быть записана на любой цифровой носитель в виде файла, передана по любым каналам связи. Воспроизводящее устройство или программа называется синтезатором (секвенсором) MIDI и фактически является автоматическим музыкальным инструментом.
В качестве контейнера для обмена и передачи видео- и звуковых данных в сфере профессионального производства и вещания применяется формат MXF (от англ. The Material eXchange Format), однако, не исключается возможность записи в контейнеры AVI, MOV и прочие.

4.Аппаратные и программные средства мультимедиа информации.

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка:
аналогоцифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно;
видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея;
декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее.
Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видеокарты.
Аппаратные средства мультимедиа:
Средства звукозаписи;
Звуковоспроизведения;
Манипуляторы;
Носители информации (CD-ROM);
Средства передачи;
Средства записи;
Обработки изображения;
Обработки видеоизображения.
Программные средства мультимедиа
Существует большое множество программных средств для разработки мультимедийных приложений. К сожалению, перечисление всех невозможно, остановимся только на наиболее распространенных программах. Их можно разделить на несколько категорий:
Средства создания и обработки изображения;
Средства создания и обработки анимации, 2D, 3D – графики;
Средства создания и обработки видеоизображения (видеомонтаж, 3D-титры);
Средства создания и обработки звука;
Средства создания презентаций.
Для преобразования аналогового видео сигнала в цифровую форму с определенными параметрами необходимо иметь аппаратное средство преобразования сигнала ( TV-тюнер, карта видеомонтажа, контроллер 1394).
Программные продукты для редактирования видео:
Quick Editor
Adobe Premiere
Ulead Video Studio 
Video Trope
Digital Movie Studio
Pinnacle Studio Plus
Power Director
Windows Movie Maker.
Windows Movie Maker - программа для создания/редактирования видео. Включается в состав клиентских версий Microsoft Windows, начиная с Windows ME и заканчивая Windows Server 2008. Обновлённая версия программы включена в Windows XP, Windows XP Media Center Edition и Windows Vista. После выпуска Vista работа над программой была прекращена. В качестве замены для неё предлагается Киностудия Windows, входящая в состав бесплатного загружаемого программного пакета Windows Live с сайта Microsoft.
Поддерживается множество форматов видео: AVI, ASF, DVR-MS, MPEG, MPG, MP2, WMV, M1V, WM, MPV2.

Программные средства работы со звуком:
Программы для работы со звуком можно условно разделить на две большие группы:
программы секвенсоры(предназначены для создания музыки).
программы, ориентированные на цифровые технологии записи звука, так называемые звуковые редакторы.
Звуковые редакторы:
Sound Forge (является одним из лидеров среди звуковых редакторов )
CoolEdit Pro  (позволяет записывать звук через звуковую карту от микрофона )
PowerTracks Pro (позволяет записывать воспроизводить и контролировать до 16 каналов аудио )
Аudacity (звуковой редактор позволяющий сочетать между собой несколько дорожек).
Для воспроизведения цифрового звука применяют специальное оборудование, например музыкальные центры, цифровые плееры, компьютеры с звуковой картой и установленным программным обеспечением аудиоплеером или медиаплеером.
По принципу записи выделяют следующие методы:
Магнитная звукозапись  запись цифровых сигналов производится на магнитную ленту. Выделяют два типа записи:
продольно-строчная система записи  в которой лента движется вдоль блока неподвижных магнитных головок записи/воспроизведения (DASH, DCC)
наклонно-строчная система записи  в которой лента движется вдоль барабана вращающихся магнитных головок и запись осуществляется наклонно отдельными дорожками, что обеспечивает большую плотность, по сравнению с продольно-строчной системой записи. (R-DAT, ADAT)
Магнитооптическая запись  запись ведется с помощью магнитной головки на специальный магнитооптический слой и в момент намагничивания кратковременно разогревается лазером до температуры точки Кюри. (Минидиск, Hi-MD)
Лазерная запись запись производится лазерным лучом, который выжигает углубления (питы) на светочувствительном слое оптического носителя. (Компакт-диск, DVD-Audio, DTS, SACD)
[ Cкачайте файл, чтобы посмотреть ссылку ]  основана на воздействии светового потока на светочувствительный слой носителя (киноленты). ([ Cкачайте файл, чтобы посмотреть ссылку ], [ Cкачайте файл, чтобы посмотреть ссылку ])
Запись звука на электронные носители  звуковые данные при помощи [ Cкачайте файл, чтобы посмотреть ссылку ] записываются в виде файлов на различные носители ([ Cкачайте файл, чтобы посмотреть ссылку ], перезаписываемые [ Cкачайте файл, чтобы посмотреть ссылку ], [ Cкачайте файл, чтобы посмотреть ссылку ], [ Cкачайте файл, чтобы посмотреть ссылку ]), при этом отсутствует ограничение на обязательное соответствие [ Cкачайте файл, чтобы посмотреть ссылку ] формату носителя.
Минимальные требования к аппаратным компонентам ПК для поддержки мультимедиа:
1. В качестве процессора вполне может быть использован любой процессор типа Аthlon или Реntium 4 с памятью 256 Мбайт или более. Такая конфигурация позволяет использовать операционную систему Windows ХР, наиболее подходящую для работы с мультимедиа.
2. В состав устройств мультимедиа включают также звуковую плату (например, Sound Blaster), дисковод СD-RОМ или DVD-RОМ, а также современную видеоплату, желательно с видеовходом и видеовыходом.
Заключение
В настоящей лекции рассмотрены понятие, содержание, принципы создания и использования мультимедиа технологий как сочетание компьютерных систем, графической, звуковой, видео- и иной информации. Существенно, что этот синтез и обработку информации сегодня удаётся выполнять практически в реальном времени, то есть без ощутимой пользователем задержки во времени.
Следует отметить, что создание и внедрение в практическую деятельность ОВД информационных технологий, реализованных в виде различных компьютерных информационных систем, в том числе использующих средства мультимедиа широко реализуется в рамках различных АИС, внедрения ЕИТКС.

Контрольные вопросы

1. Понятие мультимедиа.
2. Особенности мультимедийных технологий.
3. Аудио и видео ряды: понятие, характеристика.
4. Структурные компоненты мультимедиа.
5. Кодирование звука.
6. Основные характеристики видеосигнала.
7. Форматы видео и аудио информации.
8. Понятие кодека.
9. Аппаратные и программные средства мультимедиа.


Литература

а) основная литература:
А. С. Давыдов, Т. В. Маслова. Информационные технологии в деятельности органов внутренних дел: учебное пособие. – М.: ЦОКР МВД России, 2009.
Информатика и математика для юристов: учебник для студентов вузов, обучающихся по юридическим специальностям / под редакцией С. Я. Казанцева, Н. М. Дубининой. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2009.
Информационные технологии в юридической деятельности: учебник для бакалавров / под общей редакцией П. У. Кузнецова. – М.: Издательство Юрайт, 2012.
Симонович С. В. Информатика. Базовый курс. – СПб., Питер, 2011.
б) дополнительная литература:
Горнец Н. Н., Рощин А. Г., Соломенцев В. В. Организация ЭВМ и систем. Учебное пособие. – М., Академия, 2008.
Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем. Учебник для вузов. – СПб., Питер, 2011.
Бройдо В. Л., Ильина О. П. Вычислительные системы, сети и телекоммуникации. Учебник для вузов. – СПб., Питер, 2011.








13PAGE 15


13PAGE 141715





Приложенные файлы

  • doc 218430
    Размер файла: 151 kB Загрузок: 0

Добавить комментарий