4. Скорость и ускорение частицы при криволинейн…


Билет №4.
Скорость частицы при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и ускорение тела также постоянно изменяются по направлению, а в общем случае и по модулю.
Мгновенная скорость тела при криволинейном движении направлена в любой точке траектории по касательной к траектории в этой точке.
Этот вывод о направлении мгновенной скорости можно подтвердить, наблюдая, как движутся брызги изпод колес буксующего автомобиля или искры при заточке деталей на вращающемся точильном камне.
При криволинейном движении направление скорости тела меняется, поэтому такое движение является неравномерным, даже если модуль скорости остается постоянным.
Ускорение при криволинейном движении.Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и величина, и направление скорости.

Рис. 49. Изменение скорости при криволинейном движении.
Таким образом, в криволинейном движении всегда имеется изменение скорости, т. е. это движение происходит с ускорением. Для определения этого ускорения (по величине и направлению) требуется найти изменение скорости как вектора, т. е. требуется найти изменение величины и изменение направления скорости.
Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в  некоторый   момент скорость v1 а  через  малый промежуток времени — скорость v2. Изменение скорости есть разность между векторами v1 и v2. Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Изменение скорости выразится вектором w, изображаемым стороной параллелограмма с диагональю v2 и другой стороной v1. Ускорением мы называем отношение изменения скорости к промежутку времени, за который это изменение произошло. Значит, ускорение а равно

и по направлению совпадает с вектором w.
Выбирая t достаточно малым, придем к понятию векторного мгновенного ускорения (ср. § 16); при произвольном t вектор а будет представлять среднее ускорение за промежуток времени t.
Направление ускорения криволинейного движения не совпадает с направлением скорости, в то время как для прямолинейного движения эти направления совпадают. Чтобы найти направление вектора ускорения при криволинейном движении, достаточно сопоставить направления скоростей в двух близких точках траектории. Так как скорости направлены по касательным к траектории, то по виду самой траектории можно сделать заключение, в какую сторону от траектории направлено ускорение. Действительно, так как разность скоростей в двух близких точках траектории всегда направлена в ту сторону, куда искривляется траектория, то, значит, и ускорение при криволинейном движении всегда направлено в сторону вогнутости траектории. Например, когда шарик катится по изогнутому желобу (рис. 50), его ускорение на участках АВ и ВС всегда направлено так, как показывают стрелки, причем это не зависит от того, катится шарик от A к С или в обратном направлении.

Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости страектории.

Рис. 51. К выводу формулы для центростремительного ускорения.
Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это — ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения А и В движущейся точки, соответствующие малому промежутку времени t (рис. 51, а). Скорости движущейся точки в А и В равны по величине,  но различны по направлению.
Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники ОАВ и О'А'В' подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны А'В', изображающей приращение скорости за промежуток времени t, можно положить равной at, где а — величина искомого ускорения. Сходственная ей сторона АВ есть хорда дуги АВ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т. е. vt. Далее, 0'A'=0'B'=v; ОА= OB=R, где R — радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:

откуда находим искомое ускорение по величине:
          (27.1)
Направление ускорения перпендикулярно к хорде АВ. Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, найденное ускорение можно считать направленным перпендикулярно («нормально») к касательной к траектории, т. е. по радиусу, к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.
Если траектория — не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет нормально к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по величине и направлению, его можно найти как отношение приращения вектора скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае вектор ускорения можно найти по векторной формуле
          (27.2)
аналогичной формуле (18.1) для прямолинейного движения с постоянным ускорением. Здесь v0 — вектор скорости тела в начальный момент промежутка времени t, a v — вектор скорости в  конечный  момент этого промежутка.
Движение частицы по окружности.
Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.
Положение тела на окружности определяется радиусом-вектором , проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

Рис. 1
За время Δt тело, двигаясь из точки А в точку В, совершает перемещение , равное хорде АВ, и проходит путь, равный длине дуги l.
Радиус-вектор поворачивается на угол Δφ. Угол выражают в радианах.
Скорость  движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

В СИ единицей угловой скорости является радиан в секунду (рад/с).
При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω = const; υ = const.
Положение тела можно определить, если известен модуль радиуса-вектора  и угол φ, который он составляет с осью Ox (угловая координата). Если в начальный момент времени t0 = 0 угловая координата равна φ0, а в момент времени t она равна φ, то угол поворота Δφ радиуса-вектора за время  равен . Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

Оно позволяет определить положение тела в любой момент времени t. Учитывая, что , получаем: 
 — формула связи между линейной и угловой скоростью.
Промежуток времени Τ, в течение которого тело совершает один полный оборот, называется периодом вращения:

где N — число оборотов, совершенных телом за время Δt.
За время Δt = Τ тело проходит путь . Следовательно,

Величина ν, обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения:

Следовательно,

Угловое ускорение - векторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.
 
Угловое ускорение равно первой производной от угловой скорости по времени.
 
Формула угловой скорости:

Единица углового ускорения - радиан в секунду в квадрате.
Поступательное и вращательное движения абсолютно твёрдого тела.
Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается параллельно самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе. Поэтому кинематическое рассмотрение поступательного движения абсолютно твердого тела сводится к изучению движения любой его точки. В самом общем случае поступательно движущееся твердое тело обладает тремя степенями свободы.Движение абсолютно твердого тела, при котором две его точки А и B остаются неподвижными, называется вращением (вращательным движением) вокруг неподвижной прямой АВ, называемой осью вращения. При вращении твердого тела вокруг неподвижной оси все его точки описывают окружности, центры которых лежат на оси вращения, а плоскости - перпендикулярны к ней. Тело, вращающееся вокруг неподвижной оси, обладает одной степенью свободы: его положение полностью определяется заданием угла f поворота из некоторого начального положения.

Приложенные файлы

  • docx 8595609
    Размер файла: 65 kB Загрузок: 0

Добавить комментарий