5.1.Дыхание.Внешнее дыхание

5.1. Дыхание. Внешнее дыхание

Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.
Этапы дыхания:
1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.
2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.
3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.
4. Диффузия газов в тканях - обмен газов между кровью и тканями.
5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.
Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.
Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов:
1.Вентиляция легких
2.Диффузия газов в альвеолы и ткани из крови и в кровь.
3.Перфузия легких кровью /интенсивность кровотока в легких/.
4.Перфузия тканей кровью
Внешнее дыхание
В обеспечении вентиляции легких участвуют три анатомо-физиологических образования:
1). дыхательные пути, обладают небольшой растяжимостью и сжимаемостью, формируют поток воздуха,
2). легочная ткань, обладает высокой растяжимостью и эластичностью/ способность принимать исходное положение после прекращения деформирующей (растягивающей) силы,
3) грудная клетка, пассивная костно–хрящевая основа, ригидная к внешним воздействиям, объединенная в целое связками и дыхательными мышцами, снизу – подвижная диафрагма.

Взаимодействие грудной клетки и легких
Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель, содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением /разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление обозначается как трансдиафрагмальное.
При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми.
Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рс. ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс. ст.
Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне /открытый пневмоторакс/ или из полости легких /закрытый пневмоторакс/ уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадение одного легкого.
Легкие - максимально приспособлены для газообмена. Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких /альвеолярного воздуха/, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О2 и накопления СО2.
Вентиляция легких, т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет вдоха /инспирация/ и выдоха /экспирация/, которые характеризуются глубиной вдоха и выдоха и частотой дыхания.
Выделяют два вида дыхательных движений - спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с., объемной скорости вдоха 250 мл/с.
При вдохе преодолевается ряд сил:
1) эластическое сопротивление грудной клетки,
эластическое сопротивление внутренних органов, оказывающих давление
на диафрагму,
3) эластическое сопротивление легких,
4) вязко-динамическое сопротивление всех перечисленных выше тканей,
5) аэродинамическое сопротивление дыхательных путей,
6) силу тяжести грудной клетки,
7) силы инерции перемещаемых масс/органов/

Биомеханика спокойного вдоха
В развитии спокойного вдоха играют роль: сокращение диафрагмы и сокращение наружных косых межреберных и межхрящевых мышц.
Под влиянием нервного сигнала диафрагма /наиболее сильная мышца вдоха/ сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на 1,5-2,0 см, при глубоком дыхании -на 10 см, растет давление в брюшной полости. Размер грудной клетки увеличивается в вертикальном размере.
Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы. У мышечного волокна место прикрепления его к нижележащему ребру дальше от позвоночника, чем место его прикрепления к вышележащему ребру, поэтому момент силы нижележащего ребра при сокращении этой мышцы всегда больше, чем таковой у вышележащего ребра. Это приводит к тому, что ребра как бы приподнимаются, а грудные хрящевые концы как бы слегка скручиваются. Так как при выдохе грудные концы ребер располагаются ниже, чем позвоночные /дуга под углом/, то сокращение наружных межреберных мышц приводит их в более горизонтальное положение, окружность грудной клетки увеличивается, грудина приподнимается и выходит вперед, межреберное расстояние увеличивается. Грудная клетка не только приподнимается, но и увеличивает свои саггитальный и фронтальный размеры. За счет сокращения диафрагмы, наружных косых межреберных и межхрящевых мышц увеличивается объем грудной клетки. Движение диафрагмы обуславливает примерно 70-80% вентиляции легких.
Грудная клетка выстлана изнутри париетальным листком плевры, с которым крепко сращена. Легкое покрыто висцеральным листком плевры, с которым также крепко сращено. В нормальных условиях листки плевры плотно прилегают друг к другу и могут скользить /благодаря выделению слизи/ относительно друг друга. Силы сцепления между ними велики и листки плевры невозможно разъединить.
При вдохе париетальный листок плевры следует за расширяющейся грудной клеткой, тянет за собой висцеральный листок и тот растягивает ткань легкого, что приводит к увеличению их объема. В этих условиях воздух, находящийся в легких /альвеолах/ распределяется в новом, большем объеме, это приводит к падению давления в легких. Возникает разница давлений между окружающей средой и легкими /трансреспираторное давление/.
Трансреспираторное давление(Ртрр) - это разница между давлением в альвеолах (Ральв) и внешним /атмосферным/ давлением (Рвнеш). Ртрр= Ральв. - Рвнешн,. Равняется на вдохе - 4 мм рт. ст. Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.
Биомеханика спокойного выдоха
Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.
Причины, вызывающие выдох:
1. Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести.
2. Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму.
3. Эластичность грудной клетки и легких. За счет них грудная клетка и легкие занимают исходное положение
Трансреспираторное давление в конце выдоха составляет =+ 4 мм.рт.ст.
Биомеханика форсированного вдоха
Форсированный вдох осуществляется за счет участия дополнительных мышц. Кроме диафрагмы и наружных косых межреберных мышц в нем участвуют мышцы шеи, мышцы позвоночника, лопаточные мышцы, зубчатые мышцы.
Биомеханика форсированного выдоха
Форсированный выдох активен. Он осуществляется за счет сокращения мышц - внутренних косых межреберных мышц, мышц брюшного пресса.
Первый вдох. После рождения прекращается поступление кислорода из крови матери. Накопление углекислоты стимулирует дыхательный центр, в результате чего сокращаются дыхательные мышцы. У плода грудная клетка находится в спавшемся состоянии, т.к. головки ребер расположены вне своих суставных ямок. При первом вдохе ребра не просто поднимаются, а головки занимают свои суставные ямки, грудная клетка меняет форму, она резко увеличивается в размере, легкие остаются растянутыми.

Клинико-физиологическая оценка внешнего дыхания
Показатели функции внешнего дыхания можно разделить на 2 группы: анатомо-физиологические и физиологические.

Анатомо-физиолгические показатели - легочные объемы определяются антропометрическими данными индивидуума : 1)росто-весовыми показателями, 2) строением грудной клетки, 3) дыхательных путей, 4) строением и свойствами легочной ткани (эластическая тяга легких, поверхностное натяжение альвеол), 5) силой дыхательных мышц
Легочные объёмы и ёмкости


ОЕЛ

ЖЕЛ
РОвд

ЕВвд



ДО




РОвыд

ФОЕ



ОО
Коллапсный О




Минимальный О



Легочные объемы:
Общая емкость легких (ОЕЛ) - количество воздуха, находящееся в легких после глубокого вдоха. ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки.
ОЕЛ состоит из 2 частей:
жизненной емкости легких (ЖЕЛ) - объема, который человек может выдохнуть при глубоком выдохе после глубокого вдоха,
и остаточного объема (ОО) - объема воздуха, который остается в дыхательной системе даже после глубокого выдоха. Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем /выходит при спадении легкого/ и минимальный объем /истинный остаточный/.
Увеличение ЖЕЛ свидетельствует о повышении функциональных возможностей дыхательного аппарата. ЖЕЛ подразделяют на 3 составные части:
1. Дыхательный объем (ДО) - этот объем воздуха, который человек вдыхает и выдыхает при каждом дыхательном цикле. В покое он составляет в среднем 20% от ЖЕЛ.
2. Резервный объем вдоха (РОвд) - воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха.
3. Резервный объем выдоха (РОвд) - воздух, который пациент может максимально выдохнуть после спокойного выдоха.
Соотношение составных частей ЖЕЛ очень изменчиво. При физической нагрузке ДО может увеличиться до 80%, что сопровождается уменьшением РОвд и РОвыд до 10 %. ДО является показателем глубины дыхания.
Сумма ДО и РОвд получила название емкость вдоха(ЕВ)
Сумма ОО и РОвыд получила название функциональной остаточной емкости (ФОЕ). Величина ФОЕ отражает эффективность дыхания.
Все легочные объемы имеют должные величины, которые представлены в специальных таблицах. В таблицах отражена зависимость показателей не только от антропометрических параметров, но и от пола и возраста. Должные показатели приняты за индивидуальную норму.
Объем мертвого пространства (ОМП) - это воздух, находящийся в носоглотке, трахее и бронхах и не участвующий в газообмене. Это анатомическое мертвое пространство. Этот объем не доходит до альвеол и не обменивается кислородом с кровью. ОМП у взрослого составляет в среднем 140-150 мл. Чем больше этот объем, тем менее эффективно дыхание. Есть понятие физиологического мертвого пространства - к нему относятся не только воздухоносные пути, но и альвеолы, которые не кровоснабжаются /альвеолярное мертвое пространство/.
Коэффициент альвеолярной вентиляции (КАВ) указывает на то, какая часть воздуха обменивается при одном дыхании:
КАВ=ДО-ОМП
ФОЕ
В спокойном состоянии КАВ равен 1/7, то есть в альвеолах седьмая часть воздуха обменивается на атмосферный.
Методы измерения легочных объемов
1. Спирометрия - измерение легочных объемов. Позволяет определить ЖЕЛ, ДО, РОвд, РОвыд.
2. Спирография - регистрация легочных объемов. Позволяет документально зарегистрировать ЖЕЛ, ДО, РОвд, РОвыд, а также частоту дыхания.
3. Определение остаточного объема
- с помощью спирографа с замкнутым контуром с использованием гелия /по степени разведения гелия/.
- Общая плетизмография тела /бодиплетизмография/.
Сложная дорогостоящая методика, выполняемая в специальной герметичной камере. Позволяет с высокой точностью определять общую емкость легких /ОЕЛ/ и остаточный объем /ОО/.
Вышеуказанные показатели характеризуют не столько саму функцию дыхания, сколько потенциальную способность к выполнению этой функции.

Физиологические показатели внешнего дыхания
Физиологические показатели являются динамическими, т.к. характеризуют саму функцию внешнего дыхания во времени.
1. Минутный объем дыхания (МОД) - объем воздуха, который проходит через легкие за 1 минуту. Этот показатель можно определить двумя методами: с помощью спирографии (ДО умножается на частоту дыхания) и путем сбора воздуха в мешок Дугласа. В покое МОД составляет 4-6 литров в минуту. При физиологической нагрузке учащение и углубление дыхания приводят к возрастанию МОД до 30 л/мин.
2. Максимальная вентиляция легких (МВЛ). МВЛ - это максимальное количество воздуха, которое может вдохнуть и выдохнуть пациент за 1 минуту. В норме человек должен за минуту максимально провентилировать объем, равный ЖЕЛ * 40.
3. Форсированная жизненная емкость легких (ФЖЕЛ) - количество воздуха, которое пациент может выдохнуть за счет экспираторного маневра /максимально быстро и полно/. Характеризуется объемом форсированного выдоха за 1 секунду /ОФВ1сек/ (Форсированный экспираторный поток за 1 сек - дословный перевод термина с англ.).–Нормируется как ФЖЕЛ/ЖЕЛ, это индекс Тифно. В норме он составляет 80% ЖЕЛ. Его снижение указывает на нарушение проходимости бронхиального дерева.
Основные показатели, регистрируемые при выполнении ФЖЕЛ
-Пиковая экспираторная объемная скорость /ПОС/-максимальный показатель объемной скорости потока (л/сек) при выполнении ФЖЕЛ. Характеризует силу дыхательных мышц и калибр «главных» бронхов.
-Максимальная объемная скорость потока на уровне 25%, 50%, 75% от ФЖЕЛ. /МОС25%, МОС50%, МОС75%/. Определяется мгновенная скорость в данный момент форсированного маневра. Показатель характеризует уровень обструкции, т.е. уровень нарушения проходимости в бронхиальном дереве. МОС25% характеризует проходимость на уровне крупных бронхов, МОС50%- на уровне средних бронхов, МОС75%- на уровне мелких бронхов.
Для ПОС и МОС существуют должные величины, с которыми проводится сопоставление полученных результатов.
Показатели объемной скорости нельзя получить при спирографии, для этого используется пневмотахография
Пневмотахография проводится с помощью приборов пневмотахометров, снабженных специальными датчиками - термоанемометрами, при прохождении струи выдыхаемого воздуха меняется электрическое сопротивление пропорционально объемной скорости воздушного потока, что позволяет по показаниям прибора вычислить основные параметры внешнего дыхания. Компьютерный анализ позволяет представить полученную информацию в виде кривой «поток-объем», которая отражает проходимость различных участков дыхательных путей.

P Заголовок 1T Заголовок 2^ Заголовок 3b Заголовок 4P Заголовок 5Ў: 15тN Основной текстr Основной текст с отступом| Основной текст с отступом 2Valry I. Kiselev5C:\WINDOWS\TEMP\Автокопия 5.1.Дыхание.Внешнее дыханиеValry I. Kiselev5C:\WINDOWS\TEMP\Автокопия 5.1.Дыхание.Внешнее дыханиеValry I. Kiselev7C:\Мои документы\Лекции\5.1.Дыхание.Внешнее дыхание.docValry I. Kiselev7C:\Мои документы\Лекции\5.1.Дыхание.Внешнее дыхание.docValry I. Kiselev7C:\Мои документы\Лекции\5.1.Дыхание.Внешнее дыхание.docValry I. Kiselev5\\AZAZELLO\DOCS\4$Kot\5.1.Дыхание.Внешнее дыхание.docValry I. Kiselev5C:\WINDOWS\TEMP\Автокопия 5.1.Дыхание.Внешнее дыхание SHAXMATOVPC:\!!!_WIN\Application Data\Microsoft\Word\Автокопия 5.1.Дыхание.Внешнее дыхание SHAXMATOVCE:\Кафедра\Kafedra\Лекции\ЛекцииВИК\5.1.Дыхание.Внешнее дыхание.doc SHAXMATOVCE:\Кафедра\Kafedra\Лекции\ЛекцииВИК\5.1.Дыхание.Внешнее дыхание.doc
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·Times New RomanMS Sans SerifValry I. Kiselev SHAXMATOV

Приложенные файлы

  • doc 276937
    Размер файла: 64 kB Загрузок: 0

Добавить комментарий